These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 18837790)

  • 41. Correlation between serum levels of anti-endothelial cell autoantigen and anti-dengue virus nonstructural protein 1 antibodies in dengue patients.
    Cheng HJ; Luo YH; Wan SW; Lin CF; Wang ST; Hung NT; Liu CC; Ho TS; Liu HS; Yeh TM; Lin YS
    Am J Trop Med Hyg; 2015 May; 92(5):989-95. PubMed ID: 25758647
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Human T Cell Response to Dengue Virus Infection.
    Tian Y; Grifoni A; Sette A; Weiskopf D
    Front Immunol; 2019; 10():2125. PubMed ID: 31552052
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Dengue fever and dengue haemorrhagic fever: challenges of controlling an enemy still at large.
    Kurane I; Takasaki T
    Rev Med Virol; 2001; 11(5):301-11. PubMed ID: 11590668
    [TBL] [Abstract][Full Text] [Related]  

  • 44. T cell immunity to dengue virus and implications for vaccine design.
    Rivino L
    Expert Rev Vaccines; 2016; 15(4):443-53. PubMed ID: 26560171
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Higher levels of dengue-virus-specific IgG and IgA during pre-defervescence associated with primary dengue hemorrhagic fever.
    Bachal R; Alagarasu K; Singh A; Salunke A; Shah P; Cecilia D
    Arch Virol; 2015 Oct; 160(10):2435-43. PubMed ID: 26175069
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Association of dengue virus-specific polyfunctional T-cell responses with clinical disease severity in acute dengue infection.
    Wijeratne DT; Fernando S; Gomes L; Jeewandara C; Jayarathna G; Perera Y; Wickramanayake S; Wijewickrama A; Ogg GS; Malavige GN
    Immun Inflamm Dis; 2019 Dec; 7(4):276-285. PubMed ID: 31568656
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Evaluation of tetravalent and conserved synthetic peptides vaccines derived from Dengue virus Envelope domain I and II.
    Rocha RP; Livonesi MC; Fumagalli MJ; Rodrigues NF; da Costa LC; Dos Santos MC; de Oliveira Rocha ES; Kroon EG; Malaquias LC; Coelho LF
    Virus Res; 2014 Aug; 188():122-7. PubMed ID: 24768848
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Modelling original antigenic sin in dengue viral infection.
    Nikin-Beers R; Ciupe SM
    Math Med Biol; 2018 Jun; 35(2):257-272. PubMed ID: 28339786
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Primary dengue virus infections induce differential cytokine production in Mexican patients.
    Cruz Hernández SI; Puerta-Guardo HN; Flores Aguilar H; González Mateos S; López Martinez I; Ortiz-Navarrete V; Ludert JE; Angel RM
    Mem Inst Oswaldo Cruz; 2016 Mar; 111(3):161-7. PubMed ID: 27008374
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Protection against dengue virus by non-replicating and live attenuated vaccines used together in a prime boost vaccination strategy.
    Simmons M; Burgess T; Lynch J; Putnak R
    Virology; 2010 Jan; 396(2):280-8. PubMed ID: 19913867
    [TBL] [Abstract][Full Text] [Related]  

  • 51. DENGUE VIRUS VIRULENCE AND DISEASES SEVERITY.
    Prommalikit O; Thisyakorn U
    Southeast Asian J Trop Med Public Health; 2015; 46 Suppl 1():35-42. PubMed ID: 26506730
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Memory CD8+ T cells from naturally acquired primary dengue virus infection are highly cross-reactive.
    Friberg H; Burns L; Woda M; Kalayanarooj S; Endy TP; Stephens HA; Green S; Rothman AL; Mathew A
    Immunol Cell Biol; 2011 Jan; 89(1):122-9. PubMed ID: 20421879
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cytokine cascade in dengue hemorrhagic fever: implications for pathogenesis.
    Chaturvedi UC; Agarwal R; Elbishbishi EA; Mustafa AS
    FEMS Immunol Med Microbiol; 2000 Jul; 28(3):183-8. PubMed ID: 10865168
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Autoimmunity in dengue pathogenesis.
    Wan SW; Lin CF; Yeh TM; Liu CC; Liu HS; Wang S; Ling P; Anderson R; Lei HY; Lin YS
    J Formos Med Assoc; 2013 Jan; 112(1):3-11. PubMed ID: 23332423
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Development of a novel DNA SynCon tetravalent dengue vaccine that elicits immune responses against four serotypes.
    Ramanathan MP; Kuo YC; Selling BH; Li Q; Sardesai NY; Kim JJ; Weiner DB
    Vaccine; 2009 Oct; 27(46):6444-53. PubMed ID: 19580892
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Immune responses and severe dengue: what have we learned?
    Malavige GN; Ogg GS
    Curr Opin Infect Dis; 2024 Oct; 37(5):349-356. PubMed ID: 39079180
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Genome-Wide Analysis to Identify HLA Factors Potentially Associated With Severe Dengue.
    Gupta S; Agarwal A; Kumar A; Biswas D
    Front Immunol; 2018; 9():728. PubMed ID: 29692780
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Relationship between the Number of Repeats in the Neck Regions of L-SIGN and Augmented Virus Replication and Immune Responses in Dengue Hemorrhagic Fever.
    Liu KS; Chen PM; Wang L; Lee IK; Yang KD; Chen RF
    Int J Mol Sci; 2024 May; 25(10):. PubMed ID: 38791534
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The pathology of dengue hemorrhagic fever.
    Leong AS; Wong KT; Leong TY; Tan PH; Wannakrairot P
    Semin Diagn Pathol; 2007 Nov; 24(4):227-36. PubMed ID: 18085063
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Dengue fever: theories of immunopathogenesis and challenges for vaccination.
    Remy MM
    Inflamm Allergy Drug Targets; 2014; 13(4):262-74. PubMed ID: 25163973
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.