BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 18838082)

  • 1. Non-invasive measurement of solute permeability in cerebral microvessels of the rat.
    Yuan W; Lv Y; Zeng M; Fu BM
    Microvasc Res; 2009 Mar; 77(2):166-73. PubMed ID: 18838082
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantification of blood-brain barrier solute permeability and brain transport by multiphoton microscopy.
    Shi L; Zeng M; Sun Y; Fu BM
    J Biomech Eng; 2014 Mar; 136(3):031005. PubMed ID: 24193698
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temporal effects of vascular endothelial growth factor and 3,5-cyclic monophosphate on blood-brain barrier solute permeability in vivo.
    Shi L; Zeng M; Fu BM
    J Neurosci Res; 2014 Dec; 92(12):1678-89. PubMed ID: 25066133
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of nitric oxide synthase does not alter basal permeability of the blood-brain barrier.
    Mayhan WG
    Brain Res; 2000 Feb; 855(1):143-9. PubMed ID: 10650141
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acute VEGF effect on solute permeability of mammalian microvessels in vivo.
    Fu BM; Shen S
    Microvasc Res; 2004 Jul; 68(1):51-62. PubMed ID: 15219420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. VEGF increases permeability of the blood-brain barrier via a nitric oxide synthase/cGMP-dependent pathway.
    Mayhan WG
    Am J Physiol; 1999 May; 276(5):C1148-53. PubMed ID: 10329964
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glutamate-induced disruption of the blood-brain barrier in rats. Role of nitric oxide.
    Mayhan WG; Didion SP
    Stroke; 1996 May; 27(5):965-9; discussion 970. PubMed ID: 8623120
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of lipopolysaccharide on the permeability and reactivity of the cerebral microcirculation: role of inducible nitric oxide synthase.
    Mayhan WG
    Brain Res; 1998 May; 792(2):353-7. PubMed ID: 9593993
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of the blood-brain barrier permeability by plasma glycoprotein orosomucoid.
    Yuan W; Li G; Zeng M; Fu BM
    Microvasc Res; 2010 Jul; 80(1):148-57. PubMed ID: 20362593
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aminoguanidine suppresses basal macromolecular extravasation during diabetes mellitus.
    Mayhan WG; Sharpe GM
    Microvasc Res; 2000 Jan; 59(1):52-60. PubMed ID: 10625571
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An intravital microscopy study of radiation-induced changes in permeability and leukocyte-endothelial cell interactions in the microvessels of the rat pia mater and cremaster muscle.
    Gaber MW; Yuan H; Killmar JT; Naimark MD; Kiani MF; Merchant TE
    Brain Res Brain Res Protoc; 2004 Apr; 13(1):1-10. PubMed ID: 15063835
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantification of transient increase of the blood-brain barrier permeability to macromolecules by optimized focused ultrasound combined with microbubbles.
    Shi L; Palacio-Mancheno P; Badami J; Shin DW; Zeng M; Cardoso L; Tu R; Fu BM
    Int J Nanomedicine; 2014; 9():4437-48. PubMed ID: 25258533
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Permeability of neutral vs. anionic dextrans in cultured brain microvascular endothelium.
    Sahagun G; Moore SA; Hart MN
    Am J Physiol; 1990 Jul; 259(1 Pt 2):H162-6. PubMed ID: 1695819
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relationship between permeability status of the blood-brain barrier and in vitro permeability coefficient of a drug.
    Gaillard PJ; de Boer AG
    Eur J Pharm Sci; 2000 Dec; 12(2):95-102. PubMed ID: 11102736
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Image analysis of the microvascular permeability to various molecular weight of flucrescein in rat mesentery].
    Hu J; Song X; Li X; Tian N
    Zhongguo Ying Yong Sheng Li Xue Za Zhi; 1997 Nov; 13(4):352-5. PubMed ID: 10322970
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radiation-induced permeability and leukocyte adhesion in the rat blood-brain barrier: modulation with anti-ICAM-1 antibodies.
    Yuan H; Gaber MW; McColgan T; Naimark MD; Kiani MF; Merchant TE
    Brain Res; 2003 Apr; 969(1-2):59-69. PubMed ID: 12676365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-term observation of pial microcirculatory parameters using an implanted cranial window method in the rat.
    Masuda H; Ushiyama A; Hirota S; Lawlor GF; Ohkubo C
    In Vivo; 2007; 21(3):471-9. PubMed ID: 17591356
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pial microvascular responses to transient bilateral common carotid artery occlusion: effects of hypertonic glycerol.
    Lapi D; Marchiafava PL; Colantuoni A
    J Vasc Res; 2008; 45(2):89-102. PubMed ID: 17934320
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microvascular leakage in mouse pial venules induced by bradykinin.
    Yong T; Linthicum DS
    Brain Inj; 1996 May; 10(5):385-93. PubMed ID: 8735668
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cellular mechanisms by which tumor necrosis factor-alpha produces disruption of the blood-brain barrier.
    Mayhan WG
    Brain Res; 2002 Feb; 927(2):144-52. PubMed ID: 11821008
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.