These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. From Insect to Man: Photorhabdus Sheds Light on the Emergence of Human Pathogenicity. Mulley G; Beeton ML; Wilkinson P; Vlisidou I; Ockendon-Powell N; Hapeshi A; Tobias NJ; Nollmann FI; Bode HB; van den Elsen J; ffrench-Constant RH; Waterfield NR PLoS One; 2015; 10(12):e0144937. PubMed ID: 26681201 [TBL] [Abstract][Full Text] [Related]
23. Genome reannotation of Escherichia coli CFT073 with new insights into virulence. Luo C; Hu GQ; Zhu H BMC Genomics; 2009 Nov; 10():552. PubMed ID: 19930606 [TBL] [Abstract][Full Text] [Related]
24. A single locus from the entomopathogenic bacterium Photorhabdus luminescens inhibits activated Manduca sexta phenoloxidase. Eleftherianos I; Waterfield NR; Bone P; Boundy S; ffrench-Constant RH; Reynolds SE FEMS Microbiol Lett; 2009 Apr; 293(2):170-6. PubMed ID: 19243439 [TBL] [Abstract][Full Text] [Related]
25. A computational approach for identifying pathogenicity islands in prokaryotic genomes. Yoon SH; Hur CG; Kang HY; Kim YH; Oh TK; Kim JF BMC Bioinformatics; 2005 Jul; 6():184. PubMed ID: 16033657 [TBL] [Abstract][Full Text] [Related]
26. Characterization of Photorhabdus Virulence Cassette as a causative agent in the emerging pathogen Photorhabdus asymbiotica. Wang X; Cheng J; Shen J; Liu L; Li N; Gao N; Jiang F; Jin Q Sci China Life Sci; 2022 Mar; 65(3):618-630. PubMed ID: 34185241 [TBL] [Abstract][Full Text] [Related]
27. Comparative analysis of Klebsiella pneumoniae genomes identifies a phospholipase D family protein as a novel virulence factor. Lery LM; Frangeul L; Tomas A; Passet V; Almeida AS; Bialek-Davenet S; Barbe V; Bengoechea JA; Sansonetti P; Brisse S; Tournebize R BMC Biol; 2014 May; 12():41. PubMed ID: 24885329 [TBL] [Abstract][Full Text] [Related]
28. The regulation of pathogenicity and mutualism in Photorhabdus. Joyce SA; Watson RJ; Clarke DJ Curr Opin Microbiol; 2006 Apr; 9(2):127-32. PubMed ID: 16480919 [TBL] [Abstract][Full Text] [Related]
29. Elucidating the in vivo targets of photorhabdus toxins in real-time using Drosophila embryos. Vlisidou I; Waterfield N; Wood W Adv Exp Med Biol; 2012; 710():49-57. PubMed ID: 22127885 [TBL] [Abstract][Full Text] [Related]
30. Genome-based identification and molecular analyses of pathogenicity islands and genomic islands in Salmonella enterica. Hensel M Methods Mol Biol; 2007; 394():77-88. PubMed ID: 18363232 [TBL] [Abstract][Full Text] [Related]
31. Identification and characterization of pathogenicity and other genomic islands using base composition analyses. Guy L Future Microbiol; 2006 Oct; 1(3):309-16. PubMed ID: 17661643 [TBL] [Abstract][Full Text] [Related]
32. Genomic subtraction for the identification of putative new virulence factors of an avian pathogenic Escherichia coli strain of O2 serogroup. Schouler C; Koffmann F; Amory C; Leroy-Sétrin S; Moulin-Schouleur M Microbiology (Reading); 2004 Sep; 150(Pt 9):2973-2984. PubMed ID: 15347755 [TBL] [Abstract][Full Text] [Related]
33. Comparative Genomic Analysis of Globally Dominant ST131 Clone with Other Epidemiologically Successful Extraintestinal Pathogenic Shaik S; Ranjan A; Tiwari SK; Hussain A; Nandanwar N; Kumar N; Jadhav S; Semmler T; Baddam R; Islam MA; Alam M; Wieler LH; Watanabe H; Ahmed N mBio; 2017 Oct; 8(5):. PubMed ID: 29066550 [No Abstract] [Full Text] [Related]
34. Comparative Genomics of Zheng J; Gao Q; Liu L; Liu H; Wang Y; Peng D; Ruan L; Raymond B; Sun M mBio; 2017 Aug; 8(4):. PubMed ID: 28790205 [TBL] [Abstract][Full Text] [Related]
35. Campylobacter fetus subspecies: comparative genomics and prediction of potential virulence targets. Ali A; Soares SC; Santos AR; Guimarães LC; Barbosa E; Almeida SS; Abreu VA; Carneiro AR; Ramos RT; Bakhtiar SM; Hassan SS; Ussery DW; On S; Silva A; Schneider MP; Lage AP; Miyoshi A; Azevedo V Gene; 2012 Oct; 508(2):145-56. PubMed ID: 22890137 [TBL] [Abstract][Full Text] [Related]
36. The entomopathogenic bacterial endosymbionts Xenorhabdus and Photorhabdus: convergent lifestyles from divergent genomes. Chaston JM; Suen G; Tucker SL; Andersen AW; Bhasin A; Bode E; Bode HB; Brachmann AO; Cowles CE; Cowles KN; Darby C; de Léon L; Drace K; Du Z; Givaudan A; Herbert Tran EE; Jewell KA; Knack JJ; Krasomil-Osterfeld KC; Kukor R; Lanois A; Latreille P; Leimgruber NK; Lipke CM; Liu R; Lu X; Martens EC; Marri PR; Médigue C; Menard ML; Miller NM; Morales-Soto N; Norton S; Ogier JC; Orchard SS; Park D; Park Y; Qurollo BA; Sugar DR; Richards GR; Rouy Z; Slominski B; Slominski K; Snyder H; Tjaden BC; van der Hoeven R; Welch RD; Wheeler C; Xiang B; Barbazuk B; Gaudriault S; Goodner B; Slater SC; Forst S; Goldman BS; Goodrich-Blair H PLoS One; 2011; 6(11):e27909. PubMed ID: 22125637 [TBL] [Abstract][Full Text] [Related]
37. Photorhabdus virulence cassettes confer injectable insecticidal activity against the wax moth. Yang G; Dowling AJ; Gerike U; ffrench-Constant RH; Waterfield NR J Bacteriol; 2006 Mar; 188(6):2254-61. PubMed ID: 16513755 [TBL] [Abstract][Full Text] [Related]