These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 18838679)
1. Photoferrotrophs thrive in an Archean Ocean analogue. Crowe SA; Jones C; Katsev S; Magen C; O'Neill AH; Sturm A; Canfield DE; Haffner GD; Mucci A; Sundby B; Fowle DA Proc Natl Acad Sci U S A; 2008 Oct; 105(41):15938-43. PubMed ID: 18838679 [TBL] [Abstract][Full Text] [Related]
2. Deep-water anoxygenic photosythesis in a ferruginous chemocline. Crowe SA; Maresca JA; Jones C; Sturm A; Henny C; Fowle DA; Cox RP; Delong EF; Canfield DE Geobiology; 2014 Jul; 12(4):322-39. PubMed ID: 24923179 [TBL] [Abstract][Full Text] [Related]
3. Phototrophic Fe(II)-oxidation in the chemocline of a ferruginous meromictic lake. Walter XA; Picazo A; Miracle MR; Vicente E; Camacho A; Aragno M; Zopfi J Front Microbiol; 2014; 5():713. PubMed ID: 25538702 [TBL] [Abstract][Full Text] [Related]
4. Photoferrotrophy: Remains of an Ancient Photosynthesis in Modern Environments. Camacho A; Walter XA; Picazo A; Zopfi J Front Microbiol; 2017; 8():323. PubMed ID: 28377745 [TBL] [Abstract][Full Text] [Related]
6. Carotenoid biomarkers in Namibian shelf sediments: Anoxygenic photosynthesis during sulfide eruptions in the Benguela Upwelling System. Ma J; French KL; Cui X; Bryant DA; Summons RE Proc Natl Acad Sci U S A; 2021 Jul; 118(29):. PubMed ID: 34272281 [TBL] [Abstract][Full Text] [Related]
7. Dynamic cellular complexity of anoxygenic phototrophic sulfur bacteria in the chemocline of meromictic Lake Cadagno. Danza F; Storelli N; Roman S; Lüdin S; Tonolla M PLoS One; 2017; 12(12):e0189510. PubMed ID: 29245157 [TBL] [Abstract][Full Text] [Related]
8. The methane cycle in ferruginous Lake Matano. Crowe SA; Katsev S; Leslie K; Sturm A; Magen C; Nomosatryo S; Pack MA; Kessler JD; Reeburgh WS; Roberts JA; González L; Douglas Haffner G; Mucci A; Sundby B; Fowle DA Geobiology; 2011 Jan; 9(1):61-78. PubMed ID: 20854329 [TBL] [Abstract][Full Text] [Related]
9. Anaerobic oxidation of ferrous iron by purple bacteria, a new type of phototrophic metabolism. Ehrenreich A; Widdel F Appl Environ Microbiol; 1994 Dec; 60(12):4517-26. PubMed ID: 7811087 [TBL] [Abstract][Full Text] [Related]
10. Carbon isotope fractionation by anoxygenic phototrophic bacteria in euxinic Lake Cadagno. Posth NR; Bristow LA; Cox RP; Habicht KS; Danza F; Tonolla M; Frigaard NU; Canfield DE Geobiology; 2017 Nov; 15(6):798-816. PubMed ID: 28866873 [TBL] [Abstract][Full Text] [Related]
11. Dissolved silica affects the bulk iron redox state and recrystallization of minerals generated by photoferrotrophy in a simulated Archean ocean. Zhou A; Templeton AS; Johnson JE Geobiology; 2024; 22(1):e12587. PubMed ID: 38385601 [TBL] [Abstract][Full Text] [Related]
12. Laboratory Simulation of an Iron(II)-rich Precambrian Marine Upwelling System to Explore the Growth of Photosynthetic Bacteria. Maisch M; Wu W; Kappler A; Swanner ED J Vis Exp; 2016 Jul; (113):. PubMed ID: 27500924 [TBL] [Abstract][Full Text] [Related]
13. Characterization of the physiology and cell-mineral interactions of the marine anoxygenic phototrophic Fe(II) oxidizer Rhodovulum iodosum--implications for Precambrian Fe(II) oxidation. Wu W; Swanner ED; Hao L; Zeitvogel F; Obst M; Pan Y; Kappler A FEMS Microbiol Ecol; 2014 Jun; 88(3):503-15. PubMed ID: 24606418 [TBL] [Abstract][Full Text] [Related]
14. Physiological characterization of a halotolerant anoxygenic phototrophic Fe(II)-oxidizing green-sulfur bacterium isolated from a marine sediment. Laufer K; Niemeyer A; Nikeleit V; Halama M; Byrne JM; Kappler A FEMS Microbiol Ecol; 2017 May; 93(5):. PubMed ID: 28431154 [TBL] [Abstract][Full Text] [Related]
15. Proteome Response of a Metabolically Flexible Anoxygenic Phototroph to Fe(II) Oxidation. Bryce C; Franz-Wachtel M; Nalpas NC; Miot J; Benzerara K; Byrne JM; Kleindienst S; Macek B; Kappler A Appl Environ Microbiol; 2018 Aug; 84(16):. PubMed ID: 29915106 [TBL] [Abstract][Full Text] [Related]
16. Light-dependent sulfide oxidation in the anoxic zone of the Chesapeake Bay can be explained by small populations of phototrophic bacteria. Findlay AJ; Bennett AJ; Hanson TE; Luther GW Appl Environ Microbiol; 2015 Nov; 81(21):7560-9. PubMed ID: 26296727 [TBL] [Abstract][Full Text] [Related]
17. Carbon and Sulfur Cycling below the Chemocline in a Meromictic Lake and the Identification of a Novel Taxonomic Lineage in the FCB Superphylum, Candidatus Aegiribacteria. Hamilton TL; Bovee RJ; Sattin SR; Mohr W; Gilhooly WP; Lyons TW; Pearson A; Macalady JL Front Microbiol; 2016; 7():598. PubMed ID: 27199928 [TBL] [Abstract][Full Text] [Related]
18. Microbial processes during deposition and diagenesis of Banded Iron Formations. Dreher CL; Schad M; Robbins LJ; Konhauser KO; Kappler A; Joshi P Palaontol Z; 2021; 95(4):593-610. PubMed ID: 35034981 [TBL] [Abstract][Full Text] [Related]
19. Bacterial, Phytoplankton, and Viral Distributions and Their Biogeochemical Contexts in Meromictic Lake Cadagno Offer Insights into the Proterozoic Ocean Microbial Loop. Saini JS; Hassler C; Cable R; Fourquez M; Danza F; Roman S; Tonolla M; Storelli N; Jacquet S; Zdobnov EM; Duhaime MB mBio; 2022 Aug; 13(4):e0005222. PubMed ID: 35726916 [TBL] [Abstract][Full Text] [Related]
20. Microbial Processes and Microbial Communities in the Water Column of the Polar Meromictic Lake Bol'shie Khruslomeny at the White Sea Coast. Savvichev AS; Kadnikov VV; Rusanov II; Beletsky AV; Krasnova ED; Voronov DA; Kallistova AY; Veslopolova EF; Zakharova EE; Kokryatskaya NM; Losyuk GN; Demidenko NA; Belyaev NA; Sigalevich PA; Mardanov AV; Ravin NV; Pimenov NV Front Microbiol; 2020; 11():1945. PubMed ID: 32849486 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]