These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 18838679)
21. Physiology and phylogeny of green sulfur bacteria forming a monospecific phototrophic assemblage at a depth of 100 meters in the Black Sea. Manske AK; Glaeser J; Kuypers MM; Overmann J Appl Environ Microbiol; 2005 Dec; 71(12):8049-60. PubMed ID: 16332785 [TBL] [Abstract][Full Text] [Related]
22. Microbial community dynamics and coexistence in a sulfide-driven phototrophic bloom. Bhatnagar S; Cowley ES; Kopf SH; Pérez Castro S; Kearney S; Dawson SC; Hanselmann K; Ruff SE Environ Microbiome; 2020 Jan; 15(1):3. PubMed ID: 33902727 [TBL] [Abstract][Full Text] [Related]
23. Community shift from phototrophic to chemotrophic sulfide oxidation following anoxic holomixis in a stratified seawater lake. Pjevac P; Korlević M; Berg JS; Bura-Nakić E; Ciglenečki I; Amann R; Orlić S Appl Environ Microbiol; 2015 Jan; 81(1):298-308. PubMed ID: 25344237 [TBL] [Abstract][Full Text] [Related]
24. Evidence for anoxygenic photosynthesis from the distribution of bacteriochlorophylls in the Black Sea. Repeta DJ; Simpson DJ; Jorgensen BB; Jannasch HW Nature; 1989 Nov; 342(6245):69-72. PubMed ID: 11536615 [TBL] [Abstract][Full Text] [Related]
25. Bacterial diversity in the water column of meromictic Lake Cadagno and evidence for seasonal dynamics. Danza F; Ravasi D; Storelli N; Roman S; Lüdin S; Bueche M; Tonolla M PLoS One; 2018; 13(12):e0209743. PubMed ID: 30586464 [TBL] [Abstract][Full Text] [Related]
26. Nutrient Acquisition and the Metabolic Potential of Photoferrotrophic Chlorobi. Thompson KJ; Simister RL; Hahn AS; Hallam SJ; Crowe SA Front Microbiol; 2017; 8():1212. PubMed ID: 28729857 [TBL] [Abstract][Full Text] [Related]
27. Pelagic photoferrotrophy and iron cycling in a modern ferruginous basin. Llirós M; García-Armisen T; Darchambeau F; Morana C; Triadó-Margarit X; Inceoğlu Ö; Borrego CM; Bouillon S; Servais P; Borges AV; Descy JP; Canfield DE; Crowe SA Sci Rep; 2015 Sep; 5():13803. PubMed ID: 26348272 [TBL] [Abstract][Full Text] [Related]
28. Low-Light Anoxygenic Photosynthesis and Fe-S-Biogeochemistry in a Microbial Mat. Haas S; de Beer D; Klatt JM; Fink A; Rench RM; Hamilton TL; Meyer V; Kakuk B; Macalady JL Front Microbiol; 2018; 9():858. PubMed ID: 29755448 [TBL] [Abstract][Full Text] [Related]
29. Intensive cryptic microbial iron cycling in the low iron water column of the meromictic Lake Cadagno. Berg JS; Michellod D; Pjevac P; Martinez-Perez C; Buckner CR; Hach PF; Schubert CJ; Milucka J; Kuypers MM Environ Microbiol; 2016 Dec; 18(12):5288-5302. PubMed ID: 27768826 [TBL] [Abstract][Full Text] [Related]
30. Sulfate was a trace constituent of Archean seawater. Crowe SA; Paris G; Katsev S; Jones C; Kim ST; Zerkle AL; Nomosatryo S; Fowle DA; Adkins JF; Sessions AL; Farquhar J; Canfield DE Science; 2014 Nov; 346(6210):735-9. PubMed ID: 25378621 [TBL] [Abstract][Full Text] [Related]
32. The possible occurrence of iron-dependent anaerobic methane oxidation in an Archean Ocean analogue. Roland FAE; Borges AV; Darchambeau F; Llirós M; Descy JP; Morana C Sci Rep; 2021 Jan; 11(1):1597. PubMed ID: 33452366 [TBL] [Abstract][Full Text] [Related]
33. Microbial diversity involved in iron and cryptic sulfur cycling in the ferruginous, low-sulfate waters of Lake Pavin. Berg JS; Jézéquel D; Duverger A; Lamy D; Laberty-Robert C; Miot J PLoS One; 2019; 14(2):e0212787. PubMed ID: 30794698 [TBL] [Abstract][Full Text] [Related]
34. Cryptic Cycling of Complexes Containing Fe(III) and Organic Matter by Phototrophic Fe(II)-Oxidizing Bacteria. Peng C; Bryce C; Sundman A; Kappler A Appl Environ Microbiol; 2019 Apr; 85(8):. PubMed ID: 30796062 [TBL] [Abstract][Full Text] [Related]
35. Fossilized iron bacteria reveal a pathway to the biological origin of banded iron formation. Chi Fru E; Ivarsson M; Kilias SP; Bengtson S; Belivanova V; Marone F; Fortin D; Broman C; Stampanoni M Nat Commun; 2013; 4():2050. PubMed ID: 23784372 [TBL] [Abstract][Full Text] [Related]
36. Dark aerobic sulfide oxidation by anoxygenic phototrophs in anoxic waters. Berg JS; Pjevac P; Sommer T; Buckner CRT; Philippi M; Hach PF; Liebeke M; Holtappels M; Danza F; Tonolla M; Sengupta A; Schubert CJ; Milucka J; Kuypers MMM Environ Microbiol; 2019 May; 21(5):1611-1626. PubMed ID: 30689286 [TBL] [Abstract][Full Text] [Related]
37. A case study for late Archean and Proterozoic biogeochemical iron- and sulphur cycling in a modern habitat-the Arvadi Spring. Koeksoy E; Halama M; Hagemann N; Weigold PR; Laufer K; Kleindienst S; Byrne JM; Sundman A; Hanselmann K; Halevy I; Schoenberg R; Konhauser KO; Kappler A Geobiology; 2018 Jul; 16(4):353-368. PubMed ID: 29885273 [TBL] [Abstract][Full Text] [Related]
38. Microbial processes of the carbon and sulfur cycles in an ice-covered, iron-rich meromictic lake Svetloe (Arkhangelsk region, Russia). Savvichev AS; Kokryatskaya NM; Zabelina SA; Rusanov II; Zakharova EE; Veslopolova EF; Lunina ON; Patutina EO; Bumazhkin BK; Gruzdev DS; Sigalevich PA; Pimenov NV; Kuznetsov BB; Gorlenko VM Environ Microbiol; 2017 Feb; 19(2):659-672. PubMed ID: 27862807 [TBL] [Abstract][Full Text] [Related]
39. [Sulfur and iron cycling bacteria in low-sulfate meromictic Lake Kuznechikha]. Gorlenko VM; Vainshtein MB; Chebotarev EN Mikrobiologiia; 1980; 49(5):804-12. PubMed ID: 6777648 [TBL] [Abstract][Full Text] [Related]
40. Development of a real-time PCR method for the detection of fossil 16S rDNA fragments of phototrophic sulfur bacteria in the sediments of Lake Cadagno. Ravasi DF; Peduzzi S; Guidi V; Peduzzi R; Wirth SB; Gilli A; Tonolla M Geobiology; 2012 May; 10(3):196-204. PubMed ID: 22433067 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]