BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 18838684)

  • 1. A functional nitric oxide reductase model.
    Collman JP; Yang Y; Dey A; Decréau RA; Ghosh S; Ohta T; Solomon EI
    Proc Natl Acad Sci U S A; 2008 Oct; 105(41):15660-5. PubMed ID: 18838684
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vibrational analysis of mononitrosyl complexes in hemerythrin and flavodiiron proteins: relevance to detoxifying NO reductase.
    Hayashi T; Caranto JD; Matsumura H; Kurtz DM; Moënne-Loccoz P
    J Am Chem Soc; 2012 Apr; 134(15):6878-84. PubMed ID: 22449095
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic Potential of Microbial Communities in the Hypersaline Sediments of the Bonneville Salt Flats.
    McGonigle JM; Bernau JA; Bowen BB; Brazelton WJ
    mSystems; 2022 Dec; 7(6):e0084622. PubMed ID: 36377900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. O
    Mukherjee S; Mukherjee M; Mukherjee A; Bhagi-Damodaran A; Lu Y; Dey A
    ACS Catal; 2018 Sep; 8(9):8915-8924. PubMed ID: 35693844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nickel-mediated N-N bond formation and N
    Beagan DM; Cabelof AC; Pink M; Carta V; Gao X; Caulton KG
    Chem Sci; 2021 Aug; 12(31):10664-10672. PubMed ID: 34447560
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular understanding of heteronuclear active sites in heme-copper oxidases, nitric oxide reductases, and sulfite reductases through biomimetic modelling.
    Reed CJ; Lam QN; Mirts EN; Lu Y
    Chem Soc Rev; 2021 Mar; 50(4):2486-2539. PubMed ID: 33475096
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biological and Bioinspired Inorganic N-N Bond-Forming Reactions.
    Ferousi C; Majer SH; DiMucci IM; Lancaster KM
    Chem Rev; 2020 Jun; 120(12):5252-5307. PubMed ID: 32108471
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitric Oxide Reductase Activity in Heme-Nonheme Binuclear Engineered Myoglobins through a One-Electron Reduction Cycle.
    Sabuncu S; Reed JH; Lu Y; Moënne-Loccoz P
    J Am Chem Soc; 2018 Dec; 140(50):17389-17393. PubMed ID: 30512937
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthetic Fe/Cu Complexes: Toward Understanding Heme-Copper Oxidase Structure and Function.
    Adam SM; Wijeratne GB; Rogler PJ; Diaz DE; Quist DA; Liu JJ; Karlin KD
    Chem Rev; 2018 Nov; 118(22):10840-11022. PubMed ID: 30372042
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heme redox potentials hold the key to reactivity differences between nitric oxide reductase and heme-copper oxidase.
    Bhagi-Damodaran A; Reed JH; Zhu Q; Shi Y; Hosseinzadeh P; Sandoval BA; Harnden KA; Wang S; Sponholtz MR; Mirts EN; Dwaraknath S; Zhang Y; Moënne-Loccoz P; Lu Y
    Proc Natl Acad Sci U S A; 2018 Jun; 115(24):6195-6200. PubMed ID: 29802230
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Copper(I)/NO
    Wijeratne GB; Hematian S; Siegler MA; Karlin KD
    J Am Chem Soc; 2017 Sep; 139(38):13276-13279. PubMed ID: 28820592
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Manganese and Cobalt in the Nonheme-Metal-Binding Site of a Biosynthetic Model of Heme-Copper Oxidase Superfamily Confer Oxidase Activity through Redox-Inactive Mechanism.
    Reed JH; Shi Y; Zhu Q; Chakraborty S; Mirts EN; Petrik ID; Bhagi-Damodaran A; Ross M; Moënne-Loccoz P; Zhang Y; Lu Y
    J Am Chem Soc; 2017 Sep; 139(35):12209-12218. PubMed ID: 28768416
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using Biosynthetic Models of Heme-Copper Oxidase and Nitric Oxide Reductase in Myoglobin to Elucidate Structural Features Responsible for Enzymatic Activities.
    Bhagi-Damodaran A; Petrik I; Lu Y
    Isr J Chem; 2016 Oct; 56():773-790. PubMed ID: 27994254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Apyrase Elicits Host Antimicrobial Responses and Resolves Infection in Burns.
    Bayliss JM; Levi B; Wu J; Wang SC; Su GL; Xi C
    J Burn Care Res; 2016; 37(6):e501-e507. PubMed ID: 27058579
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three toxic gases meet in the mitochondria.
    Decréau RA; Collman JP
    Front Physiol; 2015; 6():210. PubMed ID: 26347655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent advances in biosynthetic modeling of nitric oxide reductases and insights gained from nuclear resonance vibrational and other spectroscopic studies.
    Chakraborty S; Reed J; Sage JT; Branagan NC; Petrik ID; Miner KD; Hu MY; Zhao J; Alp EE; Lu Y
    Inorg Chem; 2015 Oct; 54(19):9317-29. PubMed ID: 26274098
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectroscopic and computational study of a nonheme iron nitrosyl center in a biosynthetic model of nitric oxide reductase.
    Chakraborty S; Reed J; Ross M; Nilges MJ; Petrik ID; Ghosh S; Hammes-Schiffer S; Sage JT; Zhang Y; Schulz CE; Lu Y
    Angew Chem Int Ed Engl; 2014 Feb; 53(9):2417-21. PubMed ID: 24481708
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural basis for nitrous oxide generation by bacterial nitric oxide reductases.
    Shiro Y; Sugimoto H; Tosha T; Nagano S; Hino T
    Philos Trans R Soc Lond B Biol Sci; 2012 May; 367(1593):1195-203. PubMed ID: 22451105
    [TBL] [Abstract][Full Text] [Related]  

  • 19. S K-edge X-ray absorption spectroscopy and density functional theory studies of high and low spin {FeNO}7 thiolate complexes: exchange stabilization of electron delocalization in {FeNO}7 and {FeO2}8.
    Sun N; Liu LV; Dey A; Villar-Acevedo G; Kovacs JA; Darensbourg MY; Hodgson KO; Hedman B; Solomon EI
    Inorg Chem; 2011 Jan; 50(2):427-36. PubMed ID: 21158471
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioinspired heme, heme/nonheme diiron, heme/copper, and inorganic NOx chemistry: *NO((g)) oxidation, peroxynitrite-metal chemistry, and *NO((g)) reductive coupling.
    Schopfer MP; Wang J; Karlin KD
    Inorg Chem; 2010 Jul; 49(14):6267-82. PubMed ID: 20666386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.