BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

493 related articles for article (PubMed ID: 18839158)

  • 1. Neuromechanical stabilization of leg length and orientation through interjoint compensation during human hopping.
    Auyang AG; Yen JT; Chang YH
    Exp Brain Res; 2009 Jan; 192(2):253-64. PubMed ID: 18839158
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Joint coordination during quiet stance: effects of vision.
    Krishnamoorthy V; Yang JF; Scholz JP
    Exp Brain Res; 2005 Jul; 164(1):1-17. PubMed ID: 15841397
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuromechanical control of leg length and orientation in children and adults during single-leg hopping.
    Beerse M; Wu J
    Exp Brain Res; 2019 Jul; 237(7):1745-1757. PubMed ID: 31030280
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of a foot placement constraint on use of motor equivalence during human hopping.
    Auyang AG; Chang YH
    PLoS One; 2013; 8(7):e69429. PubMed ID: 23936013
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptation of postural orientation to changes in surface inclination.
    Kluzik J; Peterka RJ; Horak FB
    Exp Brain Res; 2007 Mar; 178(1):1-17. PubMed ID: 17039357
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two kinematic synergies in voluntary whole-body movements during standing.
    Freitas SM; Duarte M; Latash ML
    J Neurophysiol; 2006 Feb; 95(2):636-45. PubMed ID: 16267118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Joint-level kinetic redundancy is exploited to control limb-level forces during human hopping.
    Yen JT; Auyang AG; Chang YH
    Exp Brain Res; 2009 Jul; 196(3):439-51. PubMed ID: 19495732
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Asymmetrical stabilization and mobilization exploited during static single leg stance and goal directed kicking.
    King AC; Wang Z
    Hum Mov Sci; 2017 Aug; 54():182-190. PubMed ID: 28501732
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of human ankle muscle vibration on posture and balance during adaptive locomotion.
    Sorensen KL; Hollands MA; Patla E
    Exp Brain Res; 2002 Mar; 143(1):24-34. PubMed ID: 11907687
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of varying task constraints on solutions to joint coordination in a sit-to-stand task.
    Scholz JP; Reisman D; Schöner G
    Exp Brain Res; 2001 Dec; 141(4):485-500. PubMed ID: 11810142
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rate-dependent control strategies stabilize limb forces during human locomotion.
    Yen JT; Chang YH
    J R Soc Interface; 2010 May; 7(46):801-10. PubMed ID: 19828502
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stance leg control: variation of leg parameters supports stable hopping.
    Riese S; Seyfarth A
    Bioinspir Biomim; 2012 Mar; 7(1):016006. PubMed ID: 22183256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of age on stabilization of the mediolateral trajectory of the swing foot.
    Krishnan V; Rosenblatt NJ; Latash ML; Grabiner MD
    Gait Posture; 2013 Sep; 38(4):923-8. PubMed ID: 23711985
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of trial number on the emergence of the 'broken escalator' locomotor aftereffect.
    Bunday KL; Reynolds RF; Kaski D; Rao M; Salman S; Bronstein AM
    Exp Brain Res; 2006 Sep; 174(2):270-8. PubMed ID: 16639502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anticipatory control of center of mass and joint stability during voluntary arm movement from a standing posture: interplay between active and passive control.
    Patla AE; Ishac MG; Winter DA
    Exp Brain Res; 2002 Apr; 143(3):318-27. PubMed ID: 11889509
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuromechanical adaptation to hopping with an elastic ankle-foot orthosis.
    Ferris DP; Bohra ZA; Lukos JR; Kinnaird CR
    J Appl Physiol (1985); 2006 Jan; 100(1):163-70. PubMed ID: 16179395
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visual guidance of landing behaviour when stepping down to a new level.
    Buckley JG; MacLellan MJ; Tucker MW; Scally AJ; Bennett SJ
    Exp Brain Res; 2008 Jan; 184(2):223-32. PubMed ID: 17726604
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Locomotor control of limb force switches from minimal intervention principle in early adaptation to noise reduction in late adaptation.
    Selgrade BP; Chang YH
    J Neurophysiol; 2015 Mar; 113(5):1451-61. PubMed ID: 25475343
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Leg-adjustment strategies for stable running in three dimensions.
    Peuker F; Maufroy C; Seyfarth A
    Bioinspir Biomim; 2012 Sep; 7(3):036002. PubMed ID: 22498642
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developmental changes in compensatory responses to unexpected resistance of leg lift during gait initiation.
    Woollacott M; Assaiante C
    Exp Brain Res; 2002 Jun; 144(3):385-96. PubMed ID: 12021820
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.