These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 1883946)
1. Dramatic in situ conformational dynamics of the transmembrane protein bacteriorhodopsin. Draheim JE; Gibson NJ; Cassim JY Biophys J; 1991 Jul; 60(1):89-100. PubMed ID: 1883946 [TBL] [Abstract][Full Text] [Related]
2. Nature of forces stabilizing the transmembrane protein bacteriorhodopsin in purple membrane. Gibson NJ; Cassim JY Biophys J; 1989 Oct; 56(4):769-80. PubMed ID: 19431748 [TBL] [Abstract][Full Text] [Related]
3. Oriented secondary structure in integral membrane proteins. I. Circular dichroism and infrared spectroscopy of cytochrome oxidase in multilamellar films. Bazzi MD; Woody RW Biophys J; 1985 Dec; 48(6):957-66. PubMed ID: 3004614 [TBL] [Abstract][Full Text] [Related]
4. Polarized infrared spectroscopy of oriented purple membrane. Rothschild KJ; Clark NA Biophys J; 1979 Mar; 25(3):473-87. PubMed ID: 262400 [TBL] [Abstract][Full Text] [Related]
5. Conformational changes in bacteriorhodopsin studied by infrared attenuated total reflection. Marrero H; Rothschild KJ Biophys J; 1987 Oct; 52(4):629-35. PubMed ID: 3676442 [TBL] [Abstract][Full Text] [Related]
6. What spectroscopy can still tell us about the secondary structure of bacteriorhodopsin. Glaeser RM; Downing KH; Jap BK Biophys J; 1991 Apr; 59(4):934-8. PubMed ID: 2065193 [TBL] [Abstract][Full Text] [Related]
7. Infrared dichroism from the X-ray structure of bacteriorhodopsin. Marsh D; Páli T Biophys J; 2001 Jan; 80(1):305-12. PubMed ID: 11159403 [TBL] [Abstract][Full Text] [Related]
8. Structural change of bacteriorhodopsin in the purple membrane above pH 10 decreases heterogeneity of the irreversible photobleaching components. Yokoyama Y; Sonoyama M; Nakano T; Mitaku S J Biochem; 2007 Sep; 142(3):325-33. PubMed ID: 17646179 [TBL] [Abstract][Full Text] [Related]
9. Lipid-induced conformational changes of an integral membrane protein: an infrared spectroscopic study of the effects of Triton X-100 treatment on the purple membrane of Halobacterium halobium ET1001. Barnett SM; Dracheva S; Hendler R; Levin IW Biochemistry; 1996 Apr; 35(14):4558-67. PubMed ID: 8605206 [TBL] [Abstract][Full Text] [Related]
10. Structural changes in bacteriorhodopsin caused by two-photon-induced photobleaching. Rhinow D; Imhof M; Chizhik I; Baumann RP; Hampp N J Phys Chem B; 2012 Jun; 116(25):7455-62. PubMed ID: 22512248 [TBL] [Abstract][Full Text] [Related]
11. The secondary structure of bacteriorhodopsin determined by Raman and circular dichroism spectroscopy. Vogel H; Gärtner W J Biol Chem; 1987 Aug; 262(24):11464-9. PubMed ID: 3624222 [TBL] [Abstract][Full Text] [Related]
12. Light adaptation of bacteriorhodopsin correlates with dielectric spectral kinetics in purple membrane. Mostafa HI Biochem Biophys Res Commun; 2004 Mar; 315(4):857-65. PubMed ID: 14985091 [TBL] [Abstract][Full Text] [Related]
13. Structural changes in bacteriorhodopsin during proton translocation revealed by neutron diffraction. Dencher NA; Dresselhaus D; Zaccai G; Büldt G Proc Natl Acad Sci U S A; 1989 Oct; 86(20):7876-9. PubMed ID: 2554293 [TBL] [Abstract][Full Text] [Related]
14. Orientation of retinal in purple membrane determined by polarized Raman spectroscopy. Urabe H; Otomo J; Ikegami A Biophys J; 1989 Dec; 56(6):1225-8. PubMed ID: 2611333 [TBL] [Abstract][Full Text] [Related]
15. Inhomogeneous stability of bacteriorhodopsin in purple membrane against photobleaching at high temperature. Yokoyama Y; Sonoyama M; Mitaku S Proteins; 2004 Feb; 54(3):442-54. PubMed ID: 14747993 [TBL] [Abstract][Full Text] [Related]
16. Analysis of conformational changes in bacteriorhodopsin upon retinal removal. Cladera J; Torres J; Padrós E Biophys J; 1996 Jun; 70(6):2882-7. PubMed ID: 8744326 [TBL] [Abstract][Full Text] [Related]
17. Interpretation of the absorption and circular dichroic spectra of oriented purple membrane films. Muccio DD; Cassim JY Biophys J; 1979 Jun; 26(3):427-40. PubMed ID: 262427 [TBL] [Abstract][Full Text] [Related]
18. Curvature of purple membranes comprising permanently wedge-shaped bacteriorhodopsin molecules is regulated by lipid content. Rhinow D; Hampp N J Phys Chem B; 2010 Jan; 114(1):549-56. PubMed ID: 19908872 [TBL] [Abstract][Full Text] [Related]
19. Fabrication of oriented poly-L-lysine/bacteriorhodopsin-embedded purple membrane multilayer structure for enhanced photoelectric response. Li R; Cui X; Hu W; Lu Z; Li CM J Colloid Interface Sci; 2010 Apr; 344(1):150-7. PubMed ID: 20056227 [TBL] [Abstract][Full Text] [Related]