These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 18839966)

  • 1. Human alkyladenine DNA glycosylase employs a processive search for DNA damage.
    Hedglin M; O'Brien PJ
    Biochemistry; 2008 Nov; 47(44):11434-45. PubMed ID: 18839966
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinguishing Specific and Nonspecific Complexes of Alkyladenine DNA Glycosylase.
    Taylor EL; Kesavan PM; Wolfe AE; O'Brien PJ
    Biochemistry; 2018 Jul; 57(30):4440-4454. PubMed ID: 29940097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Search for DNA damage by human alkyladenine DNA glycosylase involves early intercalation by an aromatic residue.
    Hendershot JM; O'Brien PJ
    J Biol Chem; 2017 Sep; 292(39):16070-16080. PubMed ID: 28747435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hopping enables a DNA repair glycosylase to search both strands and bypass a bound protein.
    Hedglin M; O'Brien PJ
    ACS Chem Biol; 2010 Apr; 5(4):427-36. PubMed ID: 20201599
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recognition and processing of a new repertoire of DNA substrates by human 3-methyladenine DNA glycosylase (AAG).
    Lee CY; Delaney JC; Kartalou M; Lingaraju GM; Maor-Shoshani A; Essigmann JM; Samson LD
    Biochemistry; 2009 Mar; 48(9):1850-61. PubMed ID: 19219989
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human alkyladenine DNA glycosylase uses acid-base catalysis for selective excision of damaged purines.
    O'Brien PJ; Ellenberger T
    Biochemistry; 2003 Oct; 42(42):12418-29. PubMed ID: 14567703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. QM/MM Study of the Reaction Catalyzed by Alkyladenine DNA Glycosylase: Examination of the Substrate Specificity of a DNA Repair Enzyme.
    Lenz SAP; Wetmore SD
    J Phys Chem B; 2017 Dec; 121(49):11096-11108. PubMed ID: 29148771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Repair of Alkylation Damage in Eukaryotic Chromatin Depends on Searching Ability of Alkyladenine DNA Glycosylase.
    Zhang Y; O'Brien PJ
    ACS Chem Biol; 2015 Nov; 10(11):2606-15. PubMed ID: 26317160
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolating contributions from intersegmental transfer to DNA searching by alkyladenine DNA glycosylase.
    Hedglin M; Zhang Y; O'Brien PJ
    J Biol Chem; 2013 Aug; 288(34):24550-9. PubMed ID: 23839988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling the chemical step utilized by human alkyladenine DNA glycosylase: a concerted mechanism AIDS in selectively excising damaged purines.
    Rutledge LR; Wetmore SD
    J Am Chem Soc; 2011 Oct; 133(40):16258-69. PubMed ID: 21877721
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The formation of catalytically competent enzyme-substrate complex is not a bottleneck in lesion excision by human alkyladenine DNA glycosylase.
    Kuznetsov NA; Kiryutin AS; Kuznetsova AA; Panov MS; Barsukova MO; Yurkovskaya AV; Fedorova OS
    J Biomol Struct Dyn; 2017 Apr; 35(5):950-967. PubMed ID: 27025273
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing the DNA structural requirements for facilitated diffusion.
    Hedglin M; Zhang Y; O'Brien PJ
    Biochemistry; 2015 Jan; 54(2):557-66. PubMed ID: 25495964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recognition of 1,
    Thelen AZ; O'Brien PJ
    J Biol Chem; 2020 Feb; 295(6):1685-1693. PubMed ID: 31882538
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Slow base excision by human alkyladenine DNA glycosylase limits the rate of formation of AP sites and AP endonuclease 1 does not stimulate base excision.
    Maher RL; Vallur AC; Feller JA; Bloom LB
    DNA Repair (Amst); 2007 Jan; 6(1):71-81. PubMed ID: 17018265
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human AP endonuclease 1 stimulates multiple-turnover base excision by alkyladenine DNA glycosylase.
    Baldwin MR; O'Brien PJ
    Biochemistry; 2009 Jun; 48(25):6022-33. PubMed ID: 19449863
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonspecific DNA binding and coordination of the first two steps of base excision repair.
    Baldwin MR; O'Brien PJ
    Biochemistry; 2010 Sep; 49(36):7879-91. PubMed ID: 20701268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dissecting the broad substrate specificity of human 3-methyladenine-DNA glycosylase.
    O'Brien PJ; Ellenberger T
    J Biol Chem; 2004 Mar; 279(11):9750-7. PubMed ID: 14688248
    [TBL] [Abstract][Full Text] [Related]  

  • 18. N-glycosyl bond formation catalyzed by human alkyladenine DNA glycosylase.
    Admiraal SJ; O'Brien PJ
    Biochemistry; 2010 Oct; 49(42):9024-6. PubMed ID: 20873830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The efficiency of hypoxanthine excision by alkyladenine DNA glycosylase is altered by changes in nearest neighbor bases.
    Vallur AC; Maher RL; Bloom LB
    DNA Repair (Amst); 2005 Sep; 4(10):1088-98. PubMed ID: 15990363
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluating the Substrate Selectivity of Alkyladenine DNA Glycosylase: The Synergistic Interplay of Active Site Flexibility and Water Reorganization.
    Lenz SA; Wetmore SD
    Biochemistry; 2016 Feb; 55(5):798-808. PubMed ID: 26765542
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.