BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 18840434)

  • 1. Kinetic and thermodynamic stability of bacterial intracellular aggregates.
    Espargaró A; Sabaté R; Ventura S
    FEBS Lett; 2008 Oct; 582(25-26):3669-73. PubMed ID: 18840434
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of temperature on protein quality in bacterial inclusion bodies.
    de Groot NS; Ventura S
    FEBS Lett; 2006 Nov; 580(27):6471-6. PubMed ID: 17101131
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amyloid-like properties of bacterial inclusion bodies.
    Carrió M; González-Montalbán N; Vera A; Villaverde A; Ventura S
    J Mol Biol; 2005 Apr; 347(5):1025-37. PubMed ID: 15784261
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inclusion body anatomy and functioning of chaperone-mediated in vivo inclusion body disassembly during high-level recombinant protein production in Escherichia coli.
    Rinas U; Hoffmann F; Betiku E; Estapé D; Marten S
    J Biotechnol; 2007 Jan; 127(2):244-57. PubMed ID: 16945443
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein activity in bacterial inclusion bodies correlates with predicted aggregation rates.
    de Groot NS; Ventura S
    J Biotechnol; 2006 Aug; 125(1):110-3. PubMed ID: 16621081
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermodynamic analysis of the aggregation propensity of oxidized Alzheimer's beta-amyloid variants.
    Hortschansky P; Christopeit T; Schroeckh V; Fändrich M
    Protein Sci; 2005 Nov; 14(11):2915-8. PubMed ID: 16199659
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Divergent genetic control of protein solubility and conformational quality in Escherichia coli.
    García-Fruitós E; Martínez-Alonso M; Gonzàlez-Montalbán N; Valli M; Mattanovich D; Villaverde A
    J Mol Biol; 2007 Nov; 374(1):195-205. PubMed ID: 17920630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutagenesis of the central hydrophobic cluster in Abeta42 Alzheimer's peptide. Side-chain properties correlate with aggregation propensities.
    de Groot NS; Aviles FX; Vendrell J; Ventura S
    FEBS J; 2006 Feb; 273(3):658-68. PubMed ID: 16420488
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correlation between the structural stability and aggregation propensity of proteins.
    Idicula-Thomas S; Balaji PV
    In Silico Biol; 2007; 7(2):225-37. PubMed ID: 17688448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inclusion bodies: specificity in their aggregation process and amyloid-like structure.
    Morell M; Bravo R; Espargaró A; Sisquella X; Avilés FX; Fernàndez-Busquets X; Ventura S
    Biochim Biophys Acta; 2008 Oct; 1783(10):1815-25. PubMed ID: 18619498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deciphering the role of the thermodynamic and kinetic stabilities of SH3 domains on their aggregation inside bacteria.
    Castillo V; Espargaró A; Gordo V; Vendrell J; Ventura S
    Proteomics; 2010 Dec; 10(23):4172-85. PubMed ID: 21086517
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Refolding, purification, and activation of miniplasminogen and microplasminogen isolated from E. coli inclusion bodies.
    Medynski D; Tuan M; Liu W; Wu S; Lin X
    Protein Expr Purif; 2007 Apr; 52(2):395-402. PubMed ID: 17126563
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of physiological and toxic conformations in Abeta42 aggregates.
    Masuda Y; Uemura S; Ohashi R; Nakanishi A; Takegoshi K; Shimizu T; Shirasawa T; Irie K
    Chembiochem; 2009 Jan; 10(2):287-95. PubMed ID: 19115328
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Similarities in the thermodynamics and kinetics of aggregation of disease-related Abeta(1-40) peptides.
    Meinhardt J; Tartaglia GG; Pawar A; Christopeit T; Hortschansky P; Schroeckh V; Dobson CM; Vendruscolo M; Fändrich M
    Protein Sci; 2007 Jun; 16(6):1214-22. PubMed ID: 17525469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distinct β-sheet structure in protein aggregates determined by ATR-FTIR spectroscopy.
    Shivu B; Seshadri S; Li J; Oberg KA; Uversky VN; Fink AL
    Biochemistry; 2013 Aug; 52(31):5176-83. PubMed ID: 23837615
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing Alzheimer amyloid peptide aggregation using a cell-free fluorescent protein refolding method.
    Arslan PE; Chakrabartty A
    Biochem Cell Biol; 2009 Aug; 87(4):631-9. PubMed ID: 19767826
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ protein folding and activation in bacterial inclusion bodies.
    Gonzalez-Montalban N; Natalello A; García-Fruitós E; Villaverde A; Doglia SM
    Biotechnol Bioeng; 2008 Jul; 100(4):797-802. PubMed ID: 18351678
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetics of inclusion body formation studied in intact cells by FT-IR spectroscopy.
    Ami D; Natalello A; Gatti-Lafranconi P; Lotti M; Doglia SM
    FEBS Lett; 2005 Jun; 579(16):3433-6. PubMed ID: 15949804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intracellular Abeta and C99 aggregates induce mitochondria-dependent cell death in human neuroglioma H4 cells through recruitment of the 20S proteasome subunits.
    Park HJ; Kim SS; Kang S; Rhim H
    Brain Res; 2009 Jun; 1273():1-8. PubMed ID: 19362074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Concepts and tools to exploit the potential of bacterial inclusion bodies in protein science and biotechnology.
    Gatti-Lafranconi P; Natalello A; Ami D; Doglia SM; Lotti M
    FEBS J; 2011 Jul; 278(14):2408-18. PubMed ID: 21569207
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.