These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
265 related articles for article (PubMed ID: 18842043)
1. Encapsulation efficiency measured on single small unilamellar vesicles. Lohse B; Bolinger PY; Stamou D J Am Chem Soc; 2008 Nov; 130(44):14372-3. PubMed ID: 18842043 [TBL] [Abstract][Full Text] [Related]
2. Determination of the encapsulation efficiency of individual vesicles using single-vesicle photolysis and confocal single-molecule detection. Sun B; Chiu DT Anal Chem; 2005 May; 77(9):2770-6. PubMed ID: 15859592 [TBL] [Abstract][Full Text] [Related]
3. Fluorescence correlation spectroscopy for the study of membrane dynamics and organization in giant unilamellar vesicles. García-Sáez AJ; Carrer DC; Schwille P Methods Mol Biol; 2010; 606():493-508. PubMed ID: 20013417 [TBL] [Abstract][Full Text] [Related]
4. Growth and shape transformations of giant phospholipid vesicles upon interaction with an aqueous oleic acid suspension. Peterlin P; Arrigler V; Kogej K; Svetina S; Walde P Chem Phys Lipids; 2009 Jun; 159(2):67-76. PubMed ID: 19477312 [TBL] [Abstract][Full Text] [Related]
5. Trapping single molecules in liposomes: surface interactions and freeze-thaw effects. Liu B; Mazouchi A; Gradinaru CC J Phys Chem B; 2010 Nov; 114(46):15191-8. PubMed ID: 20979387 [TBL] [Abstract][Full Text] [Related]
6. Proton permeation into single vesicles occurs via a sequential two-step mechanism and is heterogeneous. Kuyper CL; Kuo JS; Mutch SA; Chiu DT J Am Chem Soc; 2006 Mar; 128(10):3233-40. PubMed ID: 16522104 [TBL] [Abstract][Full Text] [Related]
7. Membrane perturbing properties of natural phenolic and resorcinolic lipids. Stasiuk M; Kozubek A FEBS Lett; 2008 Oct; 582(25-26):3607-13. PubMed ID: 18834885 [TBL] [Abstract][Full Text] [Related]
8. A membrane filtering method for the purification of giant unilamellar vesicles. Tamba Y; Terashima H; Yamazaki M Chem Phys Lipids; 2011 Jul; 164(5):351-8. PubMed ID: 21524642 [TBL] [Abstract][Full Text] [Related]
9. Effective encapsulation of proteins into size-controlled phospholipid vesicles using freeze-thawing and extrusion. Sou K; Naito Y; Endo T; Takeoka S; Tsuchida E Biotechnol Prog; 2003; 19(5):1547-52. PubMed ID: 14524718 [TBL] [Abstract][Full Text] [Related]
10. Extrusion of electroformed giant unilamellar vesicles through track-etched membranes. Patil YP; Kumbhalkar MD; Jadhav S Chem Phys Lipids; 2012 May; 165(4):475-81. PubMed ID: 22155692 [TBL] [Abstract][Full Text] [Related]
11. Flow cytometry as a novel tool to evaluate and separate vesicles using characteristic scatter signatures. Hema Sagar G; Tiwari MD; Bellare JR J Phys Chem B; 2010 Aug; 114(31):10010-6. PubMed ID: 20684623 [TBL] [Abstract][Full Text] [Related]
12. Hierarchical unilamellar vesicles of controlled compositional heterogeneity. Hadorn M; Boenzli E; Eggenberger Hotz P; Hanczyc MM PLoS One; 2012; 7(11):e50156. PubMed ID: 23185563 [TBL] [Abstract][Full Text] [Related]
13. Isolation of giant unilamellar vesicles from electroformed vesicle suspensions and their extrusion through nano-pores. Patil YP; Ahluwalia AK; Jadhav S Chem Phys Lipids; 2013; 167-168():1-8. PubMed ID: 23328131 [TBL] [Abstract][Full Text] [Related]
14. Quantitative fluorescence microscopy to determine molecular occupancy of phospholipid vesicles. Heider EC; Peterson EM; Barhoum M; Gericke KH; Harris JM Anal Chem; 2011 Jul; 83(13):5128-36. PubMed ID: 21648957 [TBL] [Abstract][Full Text] [Related]
16. Electroformation of giant vesicles from an inverse phase precursor. Mertins O; da Silveira NP; Pohlmann AR; Schröder AP; Marques CM Biophys J; 2009 Apr; 96(7):2719-26. PubMed ID: 19348754 [TBL] [Abstract][Full Text] [Related]
17. Translocation of cationic amphipathic peptides across the membranes of pure phospholipid giant vesicles. Wheaten SA; Ablan FD; Spaller BL; Trieu JM; Almeida PF J Am Chem Soc; 2013 Nov; 135(44):16517-25. PubMed ID: 24152283 [TBL] [Abstract][Full Text] [Related]
18. Neutrase entrapment in stable multilamellar and large unilamellar vesicles for the acceleration of cheese ripening. b1esta M; Wehrli E; Puglisi G J Microencapsul; 1995; 12(3):307-25. PubMed ID: 7650594 [TBL] [Abstract][Full Text] [Related]
19. Spontaneously forming ellipsoidal phospholipid unilamellar vesicles and their interactions with helical domains of saposin C. Nieh MP; Pencer J; Katsaras J; Qi X Langmuir; 2006 Dec; 22(26):11028-33. PubMed ID: 17154581 [TBL] [Abstract][Full Text] [Related]
20. Amphipathic DNA origami nanoparticles to scaffold and deform lipid membrane vesicles. Czogalla A; Kauert DJ; Franquelim HG; Uzunova V; Zhang Y; Seidel R; Schwille P Angew Chem Int Ed Engl; 2015 May; 54(22):6501-5. PubMed ID: 25882792 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]