BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

513 related articles for article (PubMed ID: 18842067)

  • 1. Global reorganization of replication domains during embryonic stem cell differentiation.
    Hiratani I; Ryba T; Itoh M; Yokochi T; Schwaiger M; Chang CW; Lyou Y; Townes TM; Schübeler D; Gilbert DM
    PLoS Biol; 2008 Oct; 6(10):e245. PubMed ID: 18842067
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolutionarily conserved replication timing profiles predict long-range chromatin interactions and distinguish closely related cell types.
    Ryba T; Hiratani I; Lu J; Itoh M; Kulik M; Zhang J; Schulz TC; Robins AJ; Dalton S; Gilbert DM
    Genome Res; 2010 Jun; 20(6):761-70. PubMed ID: 20430782
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic changes in replication timing and gene expression during lineage specification of human pluripotent stem cells.
    Rivera-Mulia JC; Buckley Q; Sasaki T; Zimmerman J; Didier RA; Nazor K; Loring JF; Lian Z; Weissman S; Robins AJ; Schulz TC; Menendez L; Kulik MJ; Dalton S; Gabr H; Kahveci T; Gilbert DM
    Genome Res; 2015 Aug; 25(8):1091-103. PubMed ID: 26055160
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromatin-interaction compartment switch at developmentally regulated chromosomal domains reveals an unusual principle of chromatin folding.
    Takebayashi S; Dileep V; Ryba T; Dennis JH; Gilbert DM
    Proc Natl Acad Sci U S A; 2012 Jul; 109(31):12574-9. PubMed ID: 22807480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gene expression profiling reveals the heterogeneous transcriptional activity of Oct3/4 and its possible interaction with Gli2 in mouse embryonic stem cells.
    Li Y; Drnevich J; Akraiko T; Band M; Li D; Wang F; Matoba R; Tanaka TS
    Genomics; 2013; 102(5-6):456-67. PubMed ID: 24121003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Geminin is Essential to Prevent DNA Re-Replication-Dependent Apoptosis in Pluripotent Cells, but not in Differentiated Cells.
    Huang YY; Kaneko KJ; Pan H; DePamphilis ML
    Stem Cells; 2015 Nov; 33(11):3239-53. PubMed ID: 26140583
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gene function in early mouse embryonic stem cell differentiation.
    Hailesellasse Sene K; Porter CJ; Palidwor G; Perez-Iratxeta C; Muro EM; Campbell PA; Rudnicki MA; Andrade-Navarro MA
    BMC Genomics; 2007 Mar; 8():85. PubMed ID: 17394647
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid Irreversible Transcriptional Reprogramming in Human Stem Cells Accompanied by Discordance between Replication Timing and Chromatin Compartment.
    Dileep V; Wilson KA; Marchal C; Lyu X; Zhao PA; Li B; Poulet A; Bartlett DA; Rivera-Mulia JC; Qin ZS; Robins AJ; Schulz TC; Kulik MJ; McCord RP; Dekker J; Dalton S; Corces VG; Gilbert DM
    Stem Cell Reports; 2019 Jul; 13(1):193-206. PubMed ID: 31231024
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Developmental control of replication timing defines a new breed of chromosomal domains with a novel mechanism of chromatin unfolding.
    Takebayashi S; Ryba T; Gilbert DM
    Nucleus; 2012; 3(6):500-7. PubMed ID: 23023599
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predictable dynamic program of timing of DNA replication in human cells.
    Desprat R; Thierry-Mieg D; Lailler N; Lajugie J; Schildkraut C; Thierry-Mieg J; Bouhassira EE
    Genome Res; 2009 Dec; 19(12):2288-99. PubMed ID: 19767418
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selection of neural differentiation-specific genes by comparing profiles of random differentiation.
    Lee MS; Jun DH; Hwang CI; Park SS; Kang JJ; Park HS; Kim J; Kim JH; Seo JS; Park WY
    Stem Cells; 2006 Aug; 24(8):1946-55. PubMed ID: 16627687
    [TBL] [Abstract][Full Text] [Related]  

  • 12. From simple bacterial and archaeal replicons to replication N/U-domains.
    Hyrien O; Rappailles A; Guilbaud G; Baker A; Chen CL; Goldar A; Petryk N; Kahli M; Ma E; d'Aubenton-Carafa Y; Audit B; Thermes C; Arneodo A
    J Mol Biol; 2013 Nov; 425(23):4673-89. PubMed ID: 24095859
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isochores and replication time zones: a perfect match.
    Schmegner C; Hameister H; Vogel W; Assum G
    Cytogenet Genome Res; 2007; 116(3):167-72. PubMed ID: 17317955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temporal regulation of DNA replication in mammalian cells.
    Méndez J
    Crit Rev Biochem Mol Biol; 2009; 44(5):343-51. PubMed ID: 19780641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatio-temporal organization of DNA replication in murine embryonic stem, primary, and immortalized cells.
    Panning MM; Gilbert DM
    J Cell Biochem; 2005 May; 95(1):74-82. PubMed ID: 15723284
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ubiquitous human 'master' origins of replication are encoded in the DNA sequence via a local enrichment in nucleosome excluding energy barriers.
    Drillon G; Audit B; Argoul F; Arneodo A
    J Phys Condens Matter; 2015 Feb; 27(6):064102. PubMed ID: 25563930
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tying replication to cell identity.
    Egli D; Le Bin GC
    Nat Rev Mol Cell Biol; 2013 Jun; 14(6):326. PubMed ID: 23698578
    [No Abstract]   [Full Text] [Related]  

  • 18. Pan-S replication patterns and chromosomal domains defined by genome-tiling arrays of ENCODE genomic areas.
    Karnani N; Taylor C; Malhotra A; Dutta A
    Genome Res; 2007 Jun; 17(6):865-76. PubMed ID: 17568004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic changes in the epigenomic state and nuclear organization of differentiating mouse embryonic stem cells.
    Kobayakawa S; Miike K; Nakao M; Abe K
    Genes Cells; 2007 Apr; 12(4):447-60. PubMed ID: 17397393
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differentiation and large scale spatial organization of the genome.
    Joffe B; Leonhardt H; Solovei I
    Curr Opin Genet Dev; 2010 Oct; 20(5):562-9. PubMed ID: 20561778
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.