BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

341 related articles for article (PubMed ID: 18842467)

  • 1. Spatially controlled bacterial adhesion using surface-patterned poly(ethylene glycol) hydrogels.
    Krsko P; Kaplan JB; Libera M
    Acta Biomater; 2009 Feb; 5(2):589-96. PubMed ID: 18842467
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of poly(ethylene glycol) hydrogel micropatterns with osteoinductive growth factors and evaluation of the effects on osteoblast activity and function.
    Subramani K; Birch MA
    Biomed Mater; 2006 Sep; 1(3):144-54. PubMed ID: 18458396
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein surface patterning using nanoscale PEG hydrogels.
    Hong Y; Krsko P; Libera M
    Langmuir; 2004 Dec; 20(25):11123-6. PubMed ID: 15568866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduced medical infection related bacterial strains adhesion on bioactive RGD modified titanium surfaces: a first step toward cell selective surfaces.
    Maddikeri RR; Tosatti S; Schuler M; Chessari S; Textor M; Richards RG; Harris LG
    J Biomed Mater Res A; 2008 Feb; 84(2):425-35. PubMed ID: 17618480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of sterilization on poly(ethylene glycol) hydrogels.
    Kanjickal D; Lopina S; Evancho-Chapman MM; Schmidt S; Donovan D
    J Biomed Mater Res A; 2008 Dec; 87(3):608-17. PubMed ID: 18186054
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bacteria-surface interaction in the presence of proteins and surface attached poly(ethylene glycol) methacrylate chains.
    Tedjo C; Neoh KG; Kang ET; Fang N; Chan V
    J Biomed Mater Res A; 2007 Aug; 82(2):479-91. PubMed ID: 17295255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Technique of surface modification of a cell-adhesion-resistant hydrogel by a cell-adhesion-available inorganic microarray.
    Sun J; Graeter SV; Yu L; Duan S; Spatz JP; Ding J
    Biomacromolecules; 2008 Oct; 9(10):2569-72. PubMed ID: 18646821
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biofilm formation by Staphylococcus epidermidis on nitrogen ion implanted CoCrMo alloy material.
    Oztürk O; Sudagidan M; Türkan U
    J Biomed Mater Res A; 2007 Jun; 81(3):663-8. PubMed ID: 17187392
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combined influence of substrate stiffness and surface topography on the antiadhesive properties of Acr-sP(EO-stat-PO) hydrogels.
    Schulte VA; Diez M; Hu Y; Möller M; Lensen MC
    Biomacromolecules; 2010 Dec; 11(12):3375-83. PubMed ID: 21033738
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Micropatterning of a nanoporous alumina membrane with poly(ethylene glycol) hydrogel to create cellular micropatterns on nanotopographic substrates.
    Lee HJ; Kim DN; Park S; Lee Y; Koh WG
    Acta Biomater; 2011 Mar; 7(3):1281-9. PubMed ID: 21056702
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnetically and biologically active bead-patterned hydrogels.
    Pregibon DC; Toner M; Doyle PS
    Langmuir; 2006 May; 22(11):5122-8. PubMed ID: 16700603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conditions of lateral surface confinement that promote tissue-cell integration and inhibit biofilm growth.
    Wang Y; da Silva Domingues JF; Subbiahdoss G; van der Mei HC; Busscher HJ; Libera M
    Biomaterials; 2014 Jul; 35(21):5446-52. PubMed ID: 24726539
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface-modified nanoparticles as a new, versatile, and mechanically robust nonadhesive coating: suppression of protein adsorption and bacterial adhesion.
    Holmes PF; Currie EP; Thies JC; van der Mei HC; Busscher HJ; Norde W
    J Biomed Mater Res A; 2009 Dec; 91(3):824-33. PubMed ID: 19051305
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nano-mechanical exploration of the surface and sub-surface of hydrated cells of Staphylococcus epidermidis.
    Méndez-Vilas A; Gallardo-Moreno AM; González-Martín ML
    Antonie Van Leeuwenhoek; 2006; 89(3-4):373-86. PubMed ID: 16779634
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface modification of plastic, glass and titanium by photoimmobilization of polyethylene glycol for antibiofouling.
    Ito Y; Hasuda H; Sakuragi M; Tsuzuki S
    Acta Biomater; 2007 Nov; 3(6):1024-32. PubMed ID: 17644500
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ observation of biomolecules patterned on a PEG-modified Si surface by scanning probe lithography.
    Choi I; Kang SK; Lee J; Kim Y; Yi J
    Biomaterials; 2006 Sep; 27(26):4655-60. PubMed ID: 16701869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface characteristics and adhesion of Escherichia coli and Staphylococcus epidermidis.
    Gilbert P; Evans DJ; Evans E; Duguid IG; Brown MR
    J Appl Bacteriol; 1991 Jul; 71(1):72-7. PubMed ID: 1680117
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biodegradable poly(ethylene glycol)-peptide hydrogels with well-defined structure and properties for cell delivery.
    Liu SQ; Ee PL; Ke CY; Hedrick JL; Yang YY
    Biomaterials; 2009 Mar; 30(8):1453-61. PubMed ID: 19097642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of disordered hemispherical micropatterns on Staphylococcus epidermidis biofilm formation.
    Ihnen AC; Lee JH; Lee WY
    Colloids Surf B Biointerfaces; 2010 Feb; 75(2):601-7. PubMed ID: 19892532
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Degradative properties and cytocompatibility of a mixed-mode hydrogel containing oligo[poly(ethylene glycol)fumarate] and poly(ethylene glycol)dithiol.
    Brink KS; Yang PJ; Temenoff JS
    Acta Biomater; 2009 Feb; 5(2):570-9. PubMed ID: 18948068
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.