These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 18842634)

  • 1. PMAP: databases for analyzing proteolytic events and pathways.
    Igarashi Y; Heureux E; Doctor KS; Talwar P; Gramatikova S; Gramatikoff K; Zhang Y; Blinov M; Ibragimova SS; Boyd S; Ratnikov B; Cieplak P; Godzik A; Smith JW; Osterman AL; Eroshkin AM
    Nucleic Acids Res; 2009 Jan; 37(Database issue):D611-8. PubMed ID: 18842634
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CutDB: a proteolytic event database.
    Igarashi Y; Eroshkin A; Gramatikova S; Gramatikoff K; Zhang Y; Smith JW; Osterman AL; Godzik A
    Nucleic Acids Res; 2007 Jan; 35(Database issue):D546-9. PubMed ID: 17142225
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using the MEROPS Database for Proteolytic Enzymes and Their Inhibitors and Substrates.
    Rawlings ND; Barrett AJ; Bateman A
    Curr Protoc Bioinformatics; 2014 Dec; 48():1.25.1-1.25.33. PubMed ID: 25501939
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mass spectrometry-based proteomics strategies for protease cleavage site identification.
    van den Berg BH; Tholey A
    Proteomics; 2012 Feb; 12(4-5):516-29. PubMed ID: 22246699
    [TBL] [Abstract][Full Text] [Related]  

  • 5. N-terminal N-myristoylation of proteins: prediction of substrate proteins from amino acid sequence.
    Maurer-Stroh S; Eisenhaber B; Eisenhaber F
    J Mol Biol; 2002 Apr; 317(4):541-57. PubMed ID: 11955008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protease proteomics: revealing protease in vivo functions using systems biology approaches.
    Doucet A; Overall CM
    Mol Aspects Med; 2008 Oct; 29(5):339-58. PubMed ID: 18571712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ demonstration and characteristic analysis of the protease components from marine bacteria using substrate immersing zymography.
    Liu D; Yang X; Huang J; Wu R; Wu C; He H; Li H
    Appl Biochem Biotechnol; 2015 Jan; 175(1):489-501. PubMed ID: 25315385
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting Structural Susceptibility of Proteins to Proteolytic Processing.
    Matveev EV; Safronov VV; Ponomarev GV; Kazanov MD
    Int J Mol Sci; 2023 Jun; 24(13):. PubMed ID: 37445939
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein TAILS: when termini tell tales of proteolysis and function.
    Lange PF; Overall CM
    Curr Opin Chem Biol; 2013 Feb; 17(1):73-82. PubMed ID: 23298954
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [The effect of protein oxidation modification on protease-antiprotease balance and intracellular proteolysis].
    Skrzydlewska E; Farbiszewski R; Gacko M
    Postepy Hig Med Dosw; 1997; 51(4):443-56. PubMed ID: 9446105
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pep2Graph: A standalone tool to analyse proteolytic cleavages by proteases from gel-based mass spectrometry data.
    Gummadi S; Kang T; Fonseka P; Chitti SV; Ang CS; Mathivanan S
    Proteomics; 2022 Nov; 22(22):e2200147. PubMed ID: 35924633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteomic techniques and activity-based probes for the system-wide study of proteolysis.
    auf dem Keller U; Schilling O
    Biochimie; 2010 Nov; 92(11):1705-14. PubMed ID: 20493233
    [TBL] [Abstract][Full Text] [Related]  

  • 13. N- and C-terminal degradomics: new approaches to reveal biological roles for plant proteases from substrate identification.
    Huesgen PF; Overall CM
    Physiol Plant; 2012 May; 145(1):5-17. PubMed ID: 22023699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TopFIND 2.0--linking protein termini with proteolytic processing and modifications altering protein function.
    Lange PF; Huesgen PF; Overall CM
    Nucleic Acids Res; 2012 Jan; 40(Database issue):D351-61. PubMed ID: 22102574
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New opportunities for protease ligand-binding site comparisons using SitesBase.
    Gold ND; Deville K; Jackson RM
    Biochem Soc Trans; 2007 Jun; 35(Pt 3):561-5. PubMed ID: 17511652
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cleavage specificities of the brother and sister proteases Lys-C and Lys-N.
    Raijmakers R; Neerincx P; Mohammed S; Heck AJ
    Chem Commun (Camb); 2010 Dec; 46(46):8827-9. PubMed ID: 20953479
    [TBL] [Abstract][Full Text] [Related]  

  • 17. "Reverse degradomics", monitoring of proteolytic trimming by multi-CE and confocal detection of fluorescent substrates and reaction products.
    Piccard H; Hu J; Fiten P; Proost P; Martens E; Van den Steen PE; Van Damme J; Opdenakker G
    Electrophoresis; 2009 Jul; 30(13):2366-77. PubMed ID: 19621364
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highlight: the universe of proteolytic networks and mechanisms.
    Salvesen GS; Bogyo M
    Biol Chem; 2012 Sep; 393(9):841. PubMed ID: 22944685
    [No Abstract]   [Full Text] [Related]  

  • 19. MEROPS: the peptidase database.
    Rawlings ND; Morton FR; Kok CY; Kong J; Barrett AJ
    Nucleic Acids Res; 2008 Jan; 36(Database issue):D320-5. PubMed ID: 17991683
    [TBL] [Abstract][Full Text] [Related]  

  • 20. N-terminomics: a high-content screen for protease substrates and their cleavage sites.
    Timmer JC; Salvesen GS
    Methods Mol Biol; 2011; 753():243-55. PubMed ID: 21604127
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.