BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 18843153)

  • 1. Evaluation of a cruciate ligament model: sensitivity to the parameters during drawer test simulation.
    Bertozzi L; Stagni R; Fantozzi S; Cappello A
    J Appl Biomech; 2008 Aug; 24(3):234-43. PubMed ID: 18843153
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the coupling between anterior and posterior cruciate ligaments, and knee joint response under anterior femoral drawer in flexion: a finite element study.
    Moglo KE; Shirazi-Adl A
    Clin Biomech (Bristol, Avon); 2003 Oct; 18(8):751-9. PubMed ID: 12957562
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A sagittal plane model of the knee and cruciate ligaments with application of a sensitivity analysis.
    Beynnon B; Yu J; Huston D; Fleming B; Johnson R; Haugh L; Pope MH
    J Biomech Eng; 1996 May; 118(2):227-39. PubMed ID: 8738789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A musculoskeletal model of the knee for evaluating ligament forces during isometric contractions.
    Shelburne KB; Pandy MG
    J Biomech; 1997 Feb; 30(2):163-76. PubMed ID: 9001937
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cruciate ligament forces in the human knee during rehabilitation exercises.
    Toutoungi DE; Lu TW; Leardini A; Catani F; O'Connor JJ
    Clin Biomech (Bristol, Avon); 2000 Mar; 15(3):176-87. PubMed ID: 10656979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An inverse dynamics modeling approach to determine the restraining function of human knee ligament bundles.
    Mommersteeg TJ; Huiskes R; Blankevoort L; Kooloos JG; Kauer JM
    J Biomech; 1997 Feb; 30(2):139-46. PubMed ID: 9001934
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New parameters describing how knee ligaments carry force in situ predict interspecimen variations in laxity during simulated clinical exams.
    Imhauser CW; Kent RN; Boorman-Padgett J; Thein R; Wickiewicz TL; Pearle AD
    J Biomech; 2017 Nov; 64():212-218. PubMed ID: 29078961
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuromuscular disorder in response to anterior cruciate ligament creep.
    Chu D; LeBlanc R; D'Ambrosia P; D'Ambrosia R; Baratta RV; Solomonow M
    Clin Biomech (Bristol, Avon); 2003 Mar; 18(3):222-30. PubMed ID: 12620785
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the mechanical behavior of human knee ligaments: a numerical-experimental approach.
    Mommersteeg TJ; Blankevoort L; Huiskes R; Kooloos JG; Kauer JM
    J Biomech; 1996 Feb; 29(2):151-60. PubMed ID: 8849808
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A dynamic multibody model of the physiological knee to predict internal loads during movement in gravitational field.
    Bersini S; Sansone V; Frigo CA
    Comput Methods Biomech Biomed Engin; 2016; 19(5):571-9. PubMed ID: 26057607
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo elongation of the anterior cruciate ligament and posterior cruciate ligament during knee flexion.
    Li G; DeFrate LE; Sun H; Gill TJ
    Am J Sports Med; 2004 Sep; 32(6):1415-20. PubMed ID: 15310565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of graft stiffness on knee joint biomechanics after ACL reconstruction--a 3D computational simulation.
    Suggs J; Wang C; Li G
    Clin Biomech (Bristol, Avon); 2003 Jan; 18(1):35-43. PubMed ID: 12527245
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of applied quadriceps and hamstrings muscle loads on forces in the anterior and posterior cruciate ligaments.
    Markolf KL; O'Neill G; Jackson SR; McAllister DR
    Am J Sports Med; 2004; 32(5):1144-9. PubMed ID: 15262635
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The human posterior cruciate ligament complex: an interdisciplinary study. Ligament morphology and biomechanical evaluation.
    Harner CD; Xerogeanes JW; Livesay GA; Carlin GJ; Smith BA; Kusayama T; Kashiwaguchi S; Woo SL
    Am J Sports Med; 1995; 23(6):736-45. PubMed ID: 8600743
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational model-based probabilistic analysis of in vivo material properties for ligament stiffness using the laxity test and computed tomography.
    Kang KT; Kim SH; Son J; Lee YH; Chun HJ
    J Mater Sci Mater Med; 2016 Dec; 27(12):183. PubMed ID: 27787809
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Measuring ligament elasticity of the knee joint--elasticity measuring strip and its alternatives].
    Hinterwimmer S; Plitz W; Krammer M; Baumgart R
    Biomed Tech (Berl); 2002 May; 47(5):130-5. PubMed ID: 12090141
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Knee model sensitivity to cruciate ligaments parameters: a stability simulation study for a living subject.
    Bertozzi L; Stagni R; Fantozzi S; Cappello A
    J Biomech; 2007; 40 Suppl 1():S38-44. PubMed ID: 17434519
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cruciate coupling and screw-home mechanism in passive knee joint during extension--flexion.
    Moglo KE; Shirazi-Adl A
    J Biomech; 2005 May; 38(5):1075-83. PubMed ID: 15797589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A three-dimensional finite element model of the human anterior cruciate ligament: a computational analysis with experimental validation.
    Song Y; Debski RE; Musahl V; Thomas M; Woo SL
    J Biomech; 2004 Mar; 37(3):383-90. PubMed ID: 14757458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tensions in the anterior and posterior cruciate ligaments of the knee during passive loading: predicting ligament loads from in situ measurements.
    Vahey JW; Draganich LF
    J Orthop Res; 1991 Jul; 9(4):529-38. PubMed ID: 2045979
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.