These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 18843158)

  • 1. The relationship between consistency of propulsive cycles and maximum angular velocity during wheelchair racing.
    Wang YT; Vrongistinos KD; Xu D
    J Appl Biomech; 2008 Aug; 24(3):280-7. PubMed ID: 18843158
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wheelchair propulsion kinematics in beginners and expert users: influence of wheelchair settings.
    Gorce P; Louis N
    Clin Biomech (Bristol, Avon); 2012 Jan; 27(1):7-15. PubMed ID: 21840091
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of trunk kinematics and EMG activity of wheelchair racing T54 athletes on wheelchair propulsion speeds.
    Guo W; Liu Q; Huang P; Wang D; Shi L; Han D
    PeerJ; 2023; 11():e15792. PubMed ID: 37581118
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical energy and power flow of the upper extremity in manual wheelchair propulsion.
    Guo LY; Su FC; Wu HW; An KN
    Clin Biomech (Bristol, Avon); 2003 Feb; 18(2):106-14. PubMed ID: 12550808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinematics and pushrim kinetics in adolescents propelling high-strength lightweight and ultra-lightweight manual wheelchairs.
    Oliveira N; Blochlinger S; Ehrenberg N; Defosse T; Forrest G; Dyson-Hudson T; Barrance P
    Disabil Rehabil Assist Technol; 2019 Apr; 14(3):209-216. PubMed ID: 29271676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shoulder and elbow motion during two speeds of wheelchair propulsion: a description using a local coordinate system.
    Boninger ML; Cooper RA; Shimada SD; Rudy TE
    Spinal Cord; 1998 Jun; 36(6):418-26. PubMed ID: 9648199
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomechanical analysis of wheelchair propulsion for various seating positions.
    Mâsse LC; Lamontagne M; O'Riain MD
    J Rehabil Res Dev; 1992; 29(3):12-28. PubMed ID: 1640378
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shoulder movements during the initial phase of learning manual wheelchair propulsion in able-bodied subjects.
    Roux L; Hanneton S; Roby-Brami A
    Clin Biomech (Bristol, Avon); 2006; 21 Suppl 1():S45-51. PubMed ID: 16274903
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulated effect of reaction force redirection on the upper extremity mechanical demand imposed during manual wheelchair propulsion.
    Munaretto JM; McNitt-Gray JL; Flashner H; Requejo PS
    Clin Biomech (Bristol, Avon); 2012 Mar; 27(3):255-62. PubMed ID: 22071430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of a geared wheelchair wheel to reduce propulsive muscular demand during ramp ascent: analysis of muscle activation and kinematics.
    Howarth SJ; Pronovost LM; Polgar JM; Dickerson CR; Callaghan JP
    Clin Biomech (Bristol, Avon); 2010 Jan; 25(1):21-8. PubMed ID: 19880226
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional kinematics of wheelchair propulsion.
    Rao SS; Bontrager EL; Gronley JK; Newsam CJ; Perry J
    IEEE Trans Rehabil Eng; 1996 Sep; 4(3):152-60. PubMed ID: 8800218
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinematics of wheelchair propulsion in adults and children with spinal cord injury.
    Bednarczyk JH; Sanderson DJ
    Arch Phys Med Rehabil; 1994 Dec; 75(12):1327-34. PubMed ID: 7993172
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analyzing Intra-Cycle Velocity Profile and Trunk Inclination during Wheelchair Racing Propulsion.
    Poulet Y; Brassart F; Simonetti E; Pillet H; Faupin A; Sauret C
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616655
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The intra-push velocity profile of the over-ground racing wheelchair sprint start.
    Moss AD; Fowler NE; Goosey-Tolfrey VL
    J Biomech; 2005 Jan; 38(1):15-22. PubMed ID: 15519335
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of rear-wheel camber on the kinematics of upper extremity during wheelchair propulsion.
    Tsai CY; Lin CJ; Huang YC; Lin PC; Su FC
    Biomed Eng Online; 2012 Nov; 11():87. PubMed ID: 23173938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Degree of coordination between breathing and rhythmic arm movements during hand rim wheelchair propulsion.
    Fabre N; Perrey S; Arbez L; Ruiz J; Tordi N; Rouillon JD
    Int J Sports Med; 2006 Jan; 27(1):67-74. PubMed ID: 16388445
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A kinetic analysis of trained wheelchair racers during two speeds of propulsion.
    Goosey-Tolfrey VL; Fowler NE; Campbell IG; Iwnicki SD
    Med Eng Phys; 2001 May; 23(4):259-66. PubMed ID: 11427363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of resistance load on biomechanical characteristics of racing wheelchair propulsion over a roller system.
    Chow JW; Millikan TA; Carlton LG; Chae W; Morse MI
    J Biomech; 2000 May; 33(5):601-8. PubMed ID: 10708781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Upper limb joint dynamics during manual wheelchair propulsion.
    Desroches G; Dumas R; Pradon D; Vaslin P; Lepoutre FX; Chèze L
    Clin Biomech (Bristol, Avon); 2010 May; 25(4):299-306. PubMed ID: 20106573
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Symmetry of the elbow kinematics during racing wheelchair propulsion.
    Goosey VL; Campbell IG
    Ergonomics; 1998 Dec; 41(12):1810-20. PubMed ID: 9857839
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.