These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 18843548)

  • 1. Forecasting of daily total atmospheric ozone in Isfahan.
    Yazdanpanah H; Karimi M; Hejazizadeh Z
    Environ Monit Assess; 2009 Oct; 157(1-4):235-41. PubMed ID: 18843548
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Application of artificial neural networks on the prediction of surface ozone concentrations].
    Shen LL; Wang YX; Duan L
    Huan Jing Ke Xue; 2011 Aug; 32(8):2231-5. PubMed ID: 22619942
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unveiling tropospheric ozone by the traditional atmospheric model and machine learning, and their comparison:A case study in hangzhou, China.
    Feng R; Zheng HJ; Zhang AR; Huang C; Gao H; Ma YC
    Environ Pollut; 2019 Sep; 252(Pt A):366-378. PubMed ID: 31158665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intercomparison of air quality data using principal component analysis, and forecasting of PM₁₀ and PM₂.₅ concentrations using artificial neural networks, in Thessaloniki and Helsinki.
    Voukantsis D; Karatzas K; Kukkonen J; Räsänen T; Karppinen A; Kolehmainen M
    Sci Total Environ; 2011 Mar; 409(7):1266-76. PubMed ID: 21276603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of ozone concentrations in Oporto city with statistical approaches.
    Sousa SI; Martins FG; Pereira MC; Alvim-Ferraz MC
    Chemosphere; 2006 Aug; 64(7):1141-9. PubMed ID: 16405949
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Can artificial neural networks be used to predict the origin of ozone episodes?
    Fontes T; Silva LM; Silva MP; Barros N; Carvalho AC
    Sci Total Environ; 2014 Aug; 488-489():197-207. PubMed ID: 24830932
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of a multiple regression model for the forecasting of the concentrations of NOx and PM10 in Athens and Helsinki.
    Vlachogianni A; Kassomenos P; Karppinen A; Karakitsios S; Kukkonen J
    Sci Total Environ; 2011 Mar; 409(8):1559-71. PubMed ID: 21277004
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using a deep convolutional neural network to predict 2017 ozone concentrations, 24 hours in advance.
    Sayeed A; Choi Y; Eslami E; Lops Y; Roy A; Jung J
    Neural Netw; 2020 Jan; 121():396-408. PubMed ID: 31604202
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of maximum daily ozone level using combined neural network and statistical characteristics.
    Wang W; Lu W; Wang X; Leung AY
    Environ Int; 2003 Aug; 29(5):555-62. PubMed ID: 12742398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural network model for predicting peak photochemical pollutant levels.
    Melas D; Kioutsioukis I; Ziomas IC
    J Air Waste Manag Assoc; 2000 Apr; 50(4):495-501. PubMed ID: 10786000
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of tropospheric ozone concentration using artificial neural networks at traffic and background urban locations in Novi Sad, Serbia.
    Malinović-Milićević S; Vyklyuk Y; Stanojević G; Radovanović MM; Doljak D; Ćurčić NB
    Environ Monit Assess; 2021 Jan; 193(2):84. PubMed ID: 33495931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of the Loess Plateau on the atmospheric boundary layer structure and air quality in the North China Plain: a case study.
    Hu XM; Ma Z; Lin W; Zhang H; Hu J; Wang Y; Xu X; Fuentes JD; Xue M
    Sci Total Environ; 2014 Nov; 499():228-37. PubMed ID: 25192929
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving of local ozone forecasting by integrated models.
    Gradišar D; Grašič B; Božnar MZ; Mlakar P; Kocijan J
    Environ Sci Pollut Res Int; 2016 Sep; 23(18):18439-50. PubMed ID: 27287489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of daily ground-level ozone concentration maxima over New Delhi.
    Mahapatra A
    Environ Monit Assess; 2010 Nov; 170(1-4):159-70. PubMed ID: 19859819
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonlinear data assimilation for the regional modeling of maximum ozone values.
    Božnar MZ; Grašič B; Mlakar P; Gradišar D; Kocijan J
    Environ Sci Pollut Res Int; 2017 Nov; 24(31):24666-24680. PubMed ID: 28913722
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Establishment and Application of Foshan Ozone Concentration Forecast Equation].
    Chen C; Hong YY; Tan HB; Situ SP; Cheng YL; Bu QL; Wu M; Pan QY
    Huan Jing Ke Xue; 2022 Oct; 43(10):4316-4326. PubMed ID: 36224118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Forecasting PM10 in metropolitan areas: Efficacy of neural networks.
    Fernando HJ; Mammarella MC; Grandoni G; Fedele P; Di Marco R; Dimitrova R; Hyde P
    Environ Pollut; 2012 Apr; 163():62-7. PubMed ID: 22325432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multicity study of air pollution and mortality in Latin America (the ESCALA study).
    Romieu I; Gouveia N; Cifuentes LA; de Leon AP; Junger W; Vera J; Strappa V; Hurtado-Díaz M; Miranda-Soberanis V; Rojas-Bracho L; Carbajal-Arroyo L; Tzintzun-Cervantes G;
    Res Rep Health Eff Inst; 2012 Oct; (171):5-86. PubMed ID: 23311234
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study of atmospheric ozone formation by means of a neural network-based model.
    Guardani R; Nascimento CA; Guardani ML; Martins MH; Romano J
    J Air Waste Manag Assoc; 1999 Mar; 49(3):316-23. PubMed ID: 10202454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ANN application for prediction of atmospheric nitrogen deposition to aquatic ecosystems.
    Palani S; Tkalich P; Balasubramanian R; Palanichamy J
    Mar Pollut Bull; 2011 Jun; 62(6):1198-206. PubMed ID: 21481425
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.