These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 18843826)

  • 1. Afferent connections to the fast conduction pathway in the central nervous system of the leech Hirudo medicinalis.
    Bagnoli P; Brunelli M; Magni F
    Arch Ital Biol; 1973 Feb; 111(1):58-75. PubMed ID: 18843826
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two bidirectional nerve cord systems converging with electrical and chemical synapses on the Retzius cells of the leech Hirudo Medicinalis.
    Carretta M; Grassi S; Magni F
    Arch Ital Biol; 1981 May; 119(2):160-77. PubMed ID: 7259396
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Afferent sensillar inputs to the Retzius cell of the leech Hirudo medicinalis.
    Carretta M; Zampolini M
    Arch Ital Biol; 1987 Jan; 125(1):45-57. PubMed ID: 3606298
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The neuron of the fast conducting system in hirudo medicinalis: identification and synaptic connections with primary afferent neurons.
    Bagnoli P; Brunelli M; Magni F; Pellegrino M
    Arch Ital Biol; 1975 Feb; 113(1):21-43. PubMed ID: 1156079
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A fast conducting pathway in the central nervous system of the leech Hirudo medicinalis.
    Bagnoli P; Brunelli M; Magni F
    Arch Ital Biol; 1972 May; 110(1):35-51. PubMed ID: 5050121
    [No Abstract]   [Full Text] [Related]  

  • 6. Suprasegmental inputs to the fast conductin system in the central nervous system of Hirudo medicinalis.
    Bagnoli P; Brunelli M; Magni F; Pellegrino M
    Arch Ital Biol; 1974 Dec; 112(4):307-29. PubMed ID: 4458617
    [No Abstract]   [Full Text] [Related]  

  • 7. Synaptic effects elicited in the Retzius cells of the leech Hirudo medicinalis by stimulation of the segmental roots.
    Carretta M; Grassi S; Magni F
    Arch Ital Biol; 1985 Nov; 123(4):227-39. PubMed ID: 3835843
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Neural control of somatic muscle function in the earthworm, Allobophora longa, and in the leech, Hirudo medicinalis].
    David OF
    Zh Evol Biokhim Fiziol; 1978; 14(1):34-42. PubMed ID: 629112
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coding and adaptation during mechanical stimulation in the leech nervous system.
    Pinato G; Torre V
    J Physiol; 2000 Dec; 529 Pt 3(Pt 3):747-62. PubMed ID: 11118503
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Persistent modification of synaptic interactions between sensory and motor nerve cells following discrete lesions in the central nervous system of the leech.
    Jansen JK; Muller KJ; Nicholls JG
    J Physiol; 1974 Oct; 242(2):289-305. PubMed ID: 4376167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The contribution of membrane hyperpolarization to adaptation and conduction block in sensory neurones of the leech.
    Van Essen DC
    J Physiol; 1973 May; 230(3):509-34. PubMed ID: 4717151
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of afferent gut--brain function using cerebral evoked responses to esophageal stimulation.
    Hollerbach S; Kamath MV; Lock G; Schölmerich J; Upton AR; Tougas G
    Z Gastroenterol; 1998 Apr; 36(4):313-24. PubMed ID: 9612930
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intersegmental coordination of the leech swimming rhythm. II. Comparison of long and short chains of ganglia.
    Pearce RA; Friesen WO
    J Neurophysiol; 1985 Dec; 54(6):1460-72. PubMed ID: 4087043
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Somatostatin inhibits activation of dorsal cutaneous primary afferents induced by antidromic stimulation of primary afferents from an adjacent thoracic segment in the rat.
    Guo Y; Yao FR; Cao DY; Pickar JG; Zhang Q; Wang HS; Zhao Y
    Brain Res; 2008 Sep; 1229():61-71. PubMed ID: 18640104
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of spinal transcutaneous direct current stimulation on somatosensory evoked potentials in humans.
    Cogiamanian F; Vergari M; Pulecchi F; Marceglia S; Priori A
    Clin Neurophysiol; 2008 Nov; 119(11):2636-40. PubMed ID: 18786856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hyperpolarizing responses to stretch in sensory neurones innervating leech body wall muscle.
    Blackshaw SE; Thompson SW
    J Physiol; 1988 Feb; 396():121-37. PubMed ID: 3411493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Speed and temperature dependences of mechanotransduction in afferent fibers recorded from the mouse saphenous nerve.
    Milenkovic N; Wetzel C; Moshourab R; Lewin GR
    J Neurophysiol; 2008 Nov; 100(5):2771-83. PubMed ID: 18815344
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neurobiology of Stomotoca. II. Pacemakers and conduction pathways.
    Mackie GO
    J Neurobiol; 1975 Jul; 6(4):357-78. PubMed ID: 241778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temporal correlation between neuronal tail ganglion activity and locomotion in the leech, Hirudo medicinalis.
    Baader AP; Bächtold D
    Invert Neurosci; 1997 Mar; 2(4):245-51. PubMed ID: 9460234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of segmental spinal cord evoked magnetic fields after sciatic nerve stimulation.
    Tomizawa S; Kawabata S; Komori H; Hoshino Fukuoka Y; Shinomiya K
    Clin Neurophysiol; 2008 May; 119(5):1111-8. PubMed ID: 18337167
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.