BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 18844292)

  • 1. Understanding the mechanism of beta-sheet folding from a chemical and biological perspective.
    Jager M; Deechongkit S; Koepf EK; Nguyen H; Gao J; Powers ET; Gruebele M; Kelly JW
    Biopolymers; 2008; 90(6):751-8. PubMed ID: 18844292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Context-dependent contributions of backbone hydrogen bonding to beta-sheet folding energetics.
    Deechongkit S; Nguyen H; Powers ET; Dawson PE; Gruebele M; Kelly JW
    Nature; 2004 Jul; 430(6995):101-5. PubMed ID: 15229605
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Beta-sheet folding mechanisms from perturbation energetics.
    Deechongkit S; Nguyen H; Jager M; Powers ET; Gruebele M; Kelly JW
    Curr Opin Struct Biol; 2006 Feb; 16(1):94-101. PubMed ID: 16442278
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward assessing the position-dependent contributions of backbone hydrogen bonding to beta-sheet folding thermodynamics employing amide-to-ester perturbations.
    Deechongkit S; Dawson PE; Kelly JW
    J Am Chem Soc; 2004 Dec; 126(51):16762-71. PubMed ID: 15612714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of turn stability and side-chain hydrophobicity on the folding of β-structures.
    Shao Q; Wei H; Gao YQ
    J Mol Biol; 2010 Sep; 402(3):595-609. PubMed ID: 20804769
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct analysis of backbone-backbone hydrogen bond formation in protein folding transition states.
    Yang X; Wang M; Fitzgerald MC
    J Mol Biol; 2006 Oct; 363(2):506-19. PubMed ID: 16963082
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of backbone hydrogen bonds in the transition state for protein folding of a PDZ domain.
    Pedersen SW; Hultqvist G; Strømgaard K; Jemth P
    PLoS One; 2014; 9(4):e95619. PubMed ID: 24748272
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Incorporating beta-turns and a turn mimetic out of context in loop 1 of the WW domain affords cooperatively folded beta-sheets.
    Kaul R; Angeles AR; Jäger M; Powers ET; Kelly JW
    J Am Chem Soc; 2001 Jun; 123(22):5206-12. PubMed ID: 11457382
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Site-Specific Backbone and Side-Chain Contributions to Thermodynamic Stabilizing Forces of the WW Domain.
    Cho MK; Chong SH; Shin S; Ham S
    J Phys Chem B; 2021 Jul; 125(26):7108-7116. PubMed ID: 34165991
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-Resolution Mapping of the Folding Transition State of a WW Domain.
    Dave K; Jäger M; Nguyen H; Kelly JW; Gruebele M
    J Mol Biol; 2016 Apr; 428(8):1617-36. PubMed ID: 26880334
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular dynamics simulations of a beta-hairpin fragment of protein G: balance between side-chain and backbone forces.
    Ma B; Nussinov R
    J Mol Biol; 2000 Mar; 296(4):1091-104. PubMed ID: 10686106
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure-function-folding relationship in a WW domain.
    Jäger M; Zhang Y; Bieschke J; Nguyen H; Dendle M; Bowman ME; Noel JP; Gruebele M; Kelly JW
    Proc Natl Acad Sci U S A; 2006 Jul; 103(28):10648-53. PubMed ID: 16807295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of hPin1 WW N-terminal domain boundaries on function, protein stability, and folding.
    Jäger M; Nguyen H; Dendle M; Gruebele M; Kelly JW
    Protein Sci; 2007 Jul; 16(7):1495-501. PubMed ID: 17586778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural cassette mutagenesis in a de novo designed protein: proof of a novel concept for examining protein folding and stability.
    Kwok SC; Tripet B; Man JH; Chana MS; Lavigne P; Mant CT; Hodges RS
    Biopolymers; 1998; 47(1):101-23. PubMed ID: 9692331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The folding mechanism of a beta-sheet: the WW domain.
    Jäger M; Nguyen H; Crane JC; Kelly JW; Gruebele M
    J Mol Biol; 2001 Aug; 311(2):373-93. PubMed ID: 11478867
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulating the folding stability and ligand binding affinity of Pin1 WW domain by proline ring puckering.
    Tang HC; Lin YJ; Horng JC
    Proteins; 2014 Jan; 82(1):67-76. PubMed ID: 23839950
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature-dependent folding pathways of Pin1 WW domain: an all-atom molecular dynamics simulation of a Gō model.
    Luo Z; Ding J; Zhou Y
    Biophys J; 2007 Sep; 93(6):2152-61. PubMed ID: 17513360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure of the transition state in the folding process of human procarboxypeptidase A2 activation domain.
    Villegas V; Martínez JC; Avilés FX; Serrano L
    J Mol Biol; 1998 Nov; 283(5):1027-36. PubMed ID: 9799641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical shifts provide fold populations and register of beta hairpins and beta sheets.
    Fesinmeyer RM; Hudson FM; Olsen KA; White GW; Euser A; Andersen NH
    J Biomol NMR; 2005 Dec; 33(4):213-31. PubMed ID: 16341751
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Redesigning the type II' β-turn in green fluorescent protein to type I': implications for folding kinetics and stability.
    Madan B; Sokalingam S; Raghunathan G; Lee SG
    Proteins; 2014 Oct; 82(10):2812-22. PubMed ID: 25044033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.