These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
213 related articles for article (PubMed ID: 18844316)
41. Alkane hydroxylation by peroxy acids: a comparison with the cytochrome P450 hydroxylation. Groenhof AR; Ehlers AW; Lammertsma K J Phys Chem A; 2008 Dec; 112(50):12855-61. PubMed ID: 18956858 [TBL] [Abstract][Full Text] [Related]
42. How axial ligands control the reactivity of high-valent iron(IV)-oxo porphyrin pi-cation radicals in alkane hydroxylation: a computational study. Kamachi T; Kouno T; Nam W; Yoshizawa K J Inorg Biochem; 2006 Apr; 100(4):751-4. PubMed ID: 16516298 [TBL] [Abstract][Full Text] [Related]
43. Effect of the axial cysteine ligand on the electronic structure and reactivity of high-valent iron(IV) oxo-porphyrins (Compound I): a theoretical study. Choe YK; Nagase S J Comput Chem; 2005 Nov; 26(15):1600-11. PubMed ID: 16155883 [TBL] [Abstract][Full Text] [Related]
44. Catalytic reaction mechanism of homogentisate dioxygenase: a hybrid DFT study. Borowski T; Georgiev V; Siegbahn PE J Am Chem Soc; 2005 Dec; 127(49):17303-14. PubMed ID: 16332080 [TBL] [Abstract][Full Text] [Related]
45. Unique peroxidase reaction mechanism in prostaglandin endoperoxide H synthase-2: compound I in prostaglandin endoperoxide H synthase-2 can be formed without assistance by distal glutamine residue. Ichimura S; Uchida T; Taniguchi S; Hira S; Tosha T; Morishima I; Kitagawa T; Ishimori K J Biol Chem; 2007 Jun; 282(22):16681-90. PubMed ID: 17403665 [TBL] [Abstract][Full Text] [Related]
46. On the functional role of a water molecule in clade 3 catalases: a proposal for the mechanism by which NADPH prevents the formation of compound II. Sicking W; Korth HG; de Groot H; Sustmann R J Am Chem Soc; 2008 Jun; 130(23):7345-56. PubMed ID: 18479132 [TBL] [Abstract][Full Text] [Related]
47. The mechanism for isopenicillin N synthase from density-functional modeling highlights the similarities with other enzymes in the 2-His-1-carboxylate family. Lundberg M; Siegbahn PE; Morokuma K Biochemistry; 2008 Jan; 47(3):1031-42. PubMed ID: 18163649 [TBL] [Abstract][Full Text] [Related]
48. Rationalization of the barrier height for p-Z-styrene epoxidation by iron(IV)-oxo porphyrin cation radicals with variable axial ligands. Kumar D; Latifi R; Kumar S; Rybak-Akimova EV; Sainna MA; de Visser SP Inorg Chem; 2013 Jul; 52(14):7968-79. PubMed ID: 23822112 [TBL] [Abstract][Full Text] [Related]
49. Mechanism for catechol ring cleavage by non-heme iron intradiol dioxygenases: a hybrid DFT study. Borowski T; Siegbahn PE J Am Chem Soc; 2006 Oct; 128(39):12941-53. PubMed ID: 17002391 [TBL] [Abstract][Full Text] [Related]
50. Substitution of hydrogen by deuterium changes the regioselectivity of ethylbenzene hydroxylation by an oxo-iron-porphyrin catalyst. de Visser SP Chemistry; 2006 Oct; 12(31):8168-77. PubMed ID: 16871510 [TBL] [Abstract][Full Text] [Related]
51. A biomimetic ferric hydroperoxo porphyrin intermediate. de Visser SP; Valentine JS; Nam W Angew Chem Int Ed Engl; 2010 Mar; 49(12):2099-101. PubMed ID: 20140930 [No Abstract] [Full Text] [Related]
52. Heme A synthase does not incorporate molecular oxygen into the formyl group of heme A. Brown KR; Brown BM; Hoagland E; Mayne CL; Hegg EL Biochemistry; 2004 Jul; 43(27):8616-24. PubMed ID: 15236569 [TBL] [Abstract][Full Text] [Related]
53. Proton-shuffle mechanism of O-O activation for formation of a high-valent oxo-iron species of bleomycin. Kumar D; Hirao H; Shaik S; Kozlowski PM J Am Chem Soc; 2006 Dec; 128(50):16148-58. PubMed ID: 17165768 [TBL] [Abstract][Full Text] [Related]
54. Expression of human thromboxane synthase using a baculovirus system. Yokoyama C; Miyata A; Suzuki K; Nishikawa Y; Yoshimoto T; Yamamoto S; Nüsing R; Ullrich V; Tanabe T FEBS Lett; 1993 Feb; 318(1):91-4. PubMed ID: 8436233 [TBL] [Abstract][Full Text] [Related]
55. Influence of solvent composition on the kinetics of cyclooctene epoxidation by hydrogen peroxide catalyzed by iron(III) [tetrakis(pentafluorophenyl)] porphyrin chloride [(F20TPP)FeCl]. Stephenson NA; Bell AT Inorg Chem; 2006 Mar; 45(6):2758-66. PubMed ID: 16529501 [TBL] [Abstract][Full Text] [Related]
56. A heme-like, water-soluble iron(II) porphyrin: thermal and photoinduced properties, evidence for sitting-atop structure. Huszánk R; Horváth O Chem Commun (Camb); 2005 Jan; (2):224-6. PubMed ID: 15724193 [TBL] [Abstract][Full Text] [Related]
57. Conversion of the 2,2,6,6-tetramethylpiperidine moiety to a 2,2-dimethylpyrrolidine by cytochrome P450: evidence for a mechanism involving nitroxide radicals and heme iron. Yin W; Mitra K; Stearns RA; Baillie TA; Kumar S Biochemistry; 2004 May; 43(18):5455-66. PubMed ID: 15122911 [TBL] [Abstract][Full Text] [Related]
58. Reaction mechanisms of 15-hydroperoxyeicosatetraenoic acid catalyzed by human prostacyclin and thromboxane synthases. Yeh HC; Tsai AL; Wang LH Arch Biochem Biophys; 2007 May; 461(2):159-68. PubMed ID: 17459323 [TBL] [Abstract][Full Text] [Related]
59. Multistate reactivity in styrene epoxidation by compound I of cytochrome p450: mechanisms of products and side products formation. Kumar D; de Visser SP; Shaik S Chemistry; 2005 Apr; 11(9):2825-35. PubMed ID: 15744771 [TBL] [Abstract][Full Text] [Related]
60. The structures and electronic configuration of compound I intermediates of Helicobacter pylori and Penicillium vitale catalases determined by X-ray crystallography and QM/MM density functional theory calculations. Alfonso-Prieto M; Borovik A; Carpena X; Murshudov G; Melik-Adamyan W; Fita I; Rovira C; Loewen PC J Am Chem Soc; 2007 Apr; 129(14):4193-205. PubMed ID: 17358056 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]