These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 18844324)

  • 21. Hollow fiber flow field-flow fractionation of proteins using a microbore channel.
    Kang D; Moon MH
    Anal Chem; 2005 Jul; 77(13):4207-12. PubMed ID: 15987128
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Solute separation in nanofluidic channels: pressure-driven or electric field-driven?
    Xuan X; Li D
    Electrophoresis; 2007 Feb; 28(4):627-34. PubMed ID: 17304496
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hollow-fiber flow field-flow fractionation of whole blood serum.
    Zattoni A; Rambaldi DC; Roda B; Parisi D; Roda A; Moon MH; Reschiglian P
    J Chromatogr A; 2008 Mar; 1183(1-2):135-42. PubMed ID: 18258247
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Continuous two-dimensional field-flow fractionation: a novel technique for continuous separation and collection of macromolecules and particles.
    Vastamaki P; Jussila M; Riekkola ML
    Analyst; 2005 Apr; 130(4):427-32. PubMed ID: 15776150
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of asymmetrical flow field-flow fractionation channel geometry on separation efficiency.
    Ahn JY; Kim KH; Lee JY; Williams PS; Moon MH
    J Chromatogr A; 2010 Jun; 1217(24):3876-80. PubMed ID: 20439106
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Continuous particle separation based on electrical properties using alternating current dielectrophoresis.
    Cetin B; Li D
    Electrophoresis; 2009 Sep; 30(18):3124-33. PubMed ID: 19764062
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Asymmetric flow field-flow fractionation of liposomes: optimization of fractionation variables.
    Hupfeld S; Ausbacher D; Brandl M
    J Sep Sci; 2009 May; 32(9):1465-70. PubMed ID: 19350580
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Low-capacity channel designed for particle separation with controlled electric fields and evaluation of involved forces.
    Masudo T; Okada T
    J Chromatogr A; 2006 Feb; 1106(1-2):196-204. PubMed ID: 16443462
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of dissolution temperature on the structures of sodium hyaluronate by flow field-flow fractionation/multiangle light scattering.
    Lee H; Cho IH; Moon MH
    J Chromatogr A; 2006 Oct; 1131(1-2):185-91. PubMed ID: 16899247
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of a downscale sedimentation field flow fractionation device for biological event monitoring.
    Bégaud-Grimaud G; Battu S; Liagre B; Beneytout JL; Jauberteau MO; Cardot PJ
    J Chromatogr A; 2009 Dec; 1216(52):9125-33. PubMed ID: 19732901
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Circuit modification in electrical field flow fractionation systems generating higher resolution separation of nanoparticles.
    Tasci TO; Johnson WP; Fernandez DP; Manangon E; Gale BK
    J Chromatogr A; 2014 Oct; 1365():164-72. PubMed ID: 25246100
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dispersive mixing in a batch electrophoretic cell with Eyring fluids.
    Bosse MA; Troncoso SA; Arce PE
    Electrophoresis; 2002 Jul; 23(14):2157-64. PubMed ID: 12210219
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cell sorting by one gravity SPLITT fractionation.
    Benincasa MA; Moore LR; Williams PS; Poptic E; Carpino F; Zborowski M
    Anal Chem; 2005 Aug; 77(16):5294-301. PubMed ID: 16097771
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effect of obstacle conductivity and electric field on effective mobility and dispersion in electrophoretic transport: a volume averaging approach.
    Locke BR
    Electrophoresis; 2002 Aug; 23(16):2745-54. PubMed ID: 12210179
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of a microscale cyclical electrical field flow fractionation system.
    Kantak A; Srinivas M; Gale B
    Lab Chip; 2006 May; 6(5):645-54. PubMed ID: 16652180
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Capillary magnetic field flow fractionation and analysis of magnetic nanoparticles.
    Latham AH; Freitas RS; Schiffer P; Williams ME
    Anal Chem; 2005 Aug; 77(15):5055-62. PubMed ID: 16053322
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A theory-based approach to thermal field-flow fractionation of polyacrylates.
    Runyon JR; Williams SK
    J Chromatogr A; 2011 Sep; 1218(39):7016-22. PubMed ID: 21872869
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Field-flow fractionation in bioanalysis: A review of recent trends.
    Roda B; Zattoni A; Reschiglian P; Moon MH; Mirasoli M; Michelini E; Roda A
    Anal Chim Acta; 2009 Mar; 635(2):132-43. PubMed ID: 19216870
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Role of Joule heating in dispersive mixing effects in electrophoretic cells: convective-diffusive transport aspects.
    Bosse MA; Arce P
    Electrophoresis; 2000 Mar; 21(5):1026-33. PubMed ID: 10768790
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Avoiding pitfalls in electrokinetic remediation: robust design and operation criteria based on first principles for maximizing performance in a rectangular geometry.
    Oyanader MA; Arce P; Dzurik A
    Electrophoresis; 2003 Oct; 24(19-20):3457-66. PubMed ID: 14595692
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.