These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
93 related articles for article (PubMed ID: 188444)
1. D-Mannitol dehydrogenase from Absidia glauca. Steady-state kinetic properties and the inhibitory role of mannitol 1-phosphate. Ueng ST; McGuinness ET Biochemistry; 1977 Jan; 16(1):107-11. PubMed ID: 188444 [TBL] [Abstract][Full Text] [Related]
2. D-Mannitol dehydrogenase from Absidia glauca. Purification, metabolic role, and subunit interactions. Ueng ST; Hartanowicz P; Lewandoski C; Keller J; Holick M; McGuinness ET Biochemistry; 1976 Apr; 15(8):1743-9. PubMed ID: 5111 [TBL] [Abstract][Full Text] [Related]
3. Kinetic study of the catalytic mechanism of mannitol dehydrogenase from Pseudomonas fluorescens. Slatner M; Nidetzky B; Kulbe KD Biochemistry; 1999 Aug; 38(32):10489-98. PubMed ID: 10441145 [TBL] [Abstract][Full Text] [Related]
4. Examining the relative timing of hydrogen abstraction steps during NAD(+)-dependent oxidation of secondary alcohols catalyzed by long-chain D-mannitol dehydrogenase from Pseudomonas fluorescens using pH and kinetic isotope effects. Klimacek M; Nidetzky B Biochemistry; 2002 Aug; 41(31):10158-65. PubMed ID: 12146981 [TBL] [Abstract][Full Text] [Related]
5. Overall kinetic mechanism of saccharopine dehydrogenase from Saccharomyces cerevisiae. Xu H; West AH; Cook PF Biochemistry; 2006 Oct; 45(39):12156-66. PubMed ID: 17002315 [TBL] [Abstract][Full Text] [Related]
6. Enzymes of mannitol metabolism in the human pathogenic fungus Aspergillus fumigatus--kinetic properties of mannitol-1-phosphate 5-dehydrogenase and mannitol 2-dehydrogenase, and their physiological implications. Krahulec S; Armao GC; Klimacek M; Nidetzky B FEBS J; 2011 Apr; 278(8):1264-76. PubMed ID: 21299839 [TBL] [Abstract][Full Text] [Related]
7. Partial purification and characterization of mannitol: mannose 1-oxidoreductase from celeriac (Apium graveolens var. rapaceum) roots. Stoop JM; Pharr DM Arch Biochem Biophys; 1992 Nov; 298(2):612-9. PubMed ID: 1416989 [TBL] [Abstract][Full Text] [Related]
8. Application of NAD-dependent polyol dehydrogenases for enzymatic mannitol/sorbitol production with coenzyme regeneration. Parmentier S; Arnaut F; Soetaert W; Vandamme EJ Commun Agric Appl Biol Sci; 2003; 68(2 Pt A):255-62. PubMed ID: 15296174 [TBL] [Abstract][Full Text] [Related]
9. D-mannitol production by resting state whole cell biotrans-formation of D-fructose by heterologous mannitol and formate dehydrogenase gene expression in Bacillus megaterium. Bäumchen C; Roth AH; Biedendieck R; Malten M; Follmann M; Sahm H; Bringer-Meyer S; Jahn D Biotechnol J; 2007 Nov; 2(11):1408-16. PubMed ID: 17619232 [TBL] [Abstract][Full Text] [Related]
10. Mannitol-1-phosphate dehydrogenase of Escherichia coli. Chemical properties and binding of substrates. Chase T Biochem J; 1986 Oct; 239(2):435-43. PubMed ID: 3545182 [TBL] [Abstract][Full Text] [Related]
11. Kinetic studies of fructokinase I of pea seeds. Copeland L; Stone SR; Turner JF Arch Biochem Biophys; 1984 Sep; 233(2):748-60. PubMed ID: 6091556 [TBL] [Abstract][Full Text] [Related]
12. The kinetic mechanism catalysed by homogeneous rat liver 3 alpha-hydroxysteroid dehydrogenase. Evidence for binary and ternary dead-end complexes containing non-steroidal anti-inflammatory drugs. Askonas LJ; Ricigliano JW; Penning TM Biochem J; 1991 Sep; 278 ( Pt 3)(Pt 3):835-41. PubMed ID: 1898369 [TBL] [Abstract][Full Text] [Related]
13. Enzymatic properties, renaturation and metabolic role of mannitol-1-phosphate dehydrogenase from Escherichia coli. Teschner W; Serre MC; Garel JR Biochimie; 1990 Jan; 72(1):33-40. PubMed ID: 2111176 [TBL] [Abstract][Full Text] [Related]
14. Expression of glf Z.m. increases D-mannitol formation in whole cell biotransformation with resting cells of Corynebacterium glutamicum. Bäumchen C; Bringer-Meyer S Appl Microbiol Biotechnol; 2007 Sep; 76(3):545-52. PubMed ID: 17503033 [TBL] [Abstract][Full Text] [Related]
15. Patterns of product inhibition of a bifunctional dehydrogenase; L-histidinol:NAD+ oxidoreductase. Bürger E; Görisch H Eur J Biochem; 1981 May; 116(1):137-42. PubMed ID: 7018902 [TBL] [Abstract][Full Text] [Related]
16. Cytoplasmic malate dehydrogenase from Phycomyces blakesleeanus: kinetics and mechanism. Teixido F; De Arriaga D; Busto F; Soler J Can J Biochem Cell Biol; 1985 Oct; 63(10):1097-105. PubMed ID: 4075224 [TBL] [Abstract][Full Text] [Related]
17. Steady-state kinetic mechanism of the NADP+- and NAD+-dependent reactions catalysed by betaine aldehyde dehydrogenase from Pseudomonas aeruginosa. Velasco-García R; González-Segura L; Muñoz-Clares RA Biochem J; 2000 Dec; 352 Pt 3(Pt 3):675-83. PubMed ID: 11104673 [TBL] [Abstract][Full Text] [Related]
18. Betaine-aldehyde dehydrogenase from leaves of Amaranthus hypochondriacus L. exhibits an Iso Ordered Bi Bi steady state mechanism. Valenzuela-Soto EM; Muñoz-Clares RA J Biol Chem; 1993 Nov; 268(32):23818-23. PubMed ID: 8226918 [TBL] [Abstract][Full Text] [Related]
19. UDPglucose dehydrogenase. Kinetics and their mechanistic implications. Ordman AB; Kirkwood S Biochim Biophys Acta; 1977 Mar; 481(1):25-32. PubMed ID: 191082 [TBL] [Abstract][Full Text] [Related]
20. Purification and characterization of a novel mannitol dehydrogenase from a newly isolated strain of Candida magnoliae. Lee JK; Koo BS; Kim SY; Hyun HH Appl Environ Microbiol; 2003 Aug; 69(8):4438-47. PubMed ID: 12902227 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]