These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. [Progress in the study of lipoprotein metabolism and atherosclerosis: mechanism of foam cell transformation of macrophages--with special reference to oxidized LDL]. Yokode M; Kita T; Kawai C Nihon Rinsho; 1988 Mar; 46(3):652-8. PubMed ID: 3404691 [No Abstract] [Full Text] [Related]
4. Lipid peroxidation and its role in atherosclerosis. Esterbauer H; Wäg G; Puhl H Br Med Bull; 1993 Jul; 49(3):566-76. PubMed ID: 8221023 [TBL] [Abstract][Full Text] [Related]
5. Role of oxidized LDL and antioxidants in atherosclerosis. Steinberg D Adv Exp Med Biol; 1995; 369():39-48. PubMed ID: 7598015 [No Abstract] [Full Text] [Related]
6. The oxidation hypothesis of atherosclerosis: an update. Westhuyzen J Ann Clin Lab Sci; 1997; 27(1):1-10. PubMed ID: 8997452 [TBL] [Abstract][Full Text] [Related]
7. Arachidonate metabolism during foam cell transformation of macrophages. Yokode M; Kita T; Narumiya S; Kawai C Adv Prostaglandin Thromboxane Leukot Res; 1987; 17A():229-32. PubMed ID: 2959054 [No Abstract] [Full Text] [Related]
9. Effects of native and modified low-density lipoproteins on monocyte recruitment in atherosclerosis. Gleissner CA; Leitinger N; Ley K Hypertension; 2007 Aug; 50(2):276-83. PubMed ID: 17548720 [No Abstract] [Full Text] [Related]
10. Cigarette smoke, LDL and cholesteryl ester accumulation in macrophages. Implications for atherosclerosis. Kita T; Yokode M; Arai H; Iiyama M; Ueda Y; Ueyama K; Narumiya S Ann N Y Acad Sci; 1993 May; 686():91-6; discussion 97-8. PubMed ID: 8512264 [No Abstract] [Full Text] [Related]
11. Beta-amyloid (Abeta40, Abeta42) binding to modified LDL accelerates macrophage foam cell formation. Schulz B; Liebisch G; Grandl M; Werner T; Barlage S; Schmitz G Biochim Biophys Acta; 2007 Oct; 1771(10):1335-44. PubMed ID: 17881287 [TBL] [Abstract][Full Text] [Related]
12. [Interactions of low density lipoproteins with glycosaminoglycans and foam cells within the atherosclerotic aorta (author's transl)]. Popow AW; Kusnezow AS; Winogradow AG Dtsch Z Verdau Stoffwechselkr; 1979; 39(3):130-6. PubMed ID: 230023 [TBL] [Abstract][Full Text] [Related]
13. [Atherosclerosis. Description and mechanisms. Part 2: mechanisms]. Capron L Rev Neurol (Paris); 1983; 139(4):239-50. PubMed ID: 6612139 [No Abstract] [Full Text] [Related]
14. Vascular oxidative stress and antioxidant protection in atherosclerosis: what do the clinical trials say? Keaney JF; Vita JA J Cardiopulm Rehabil; 2002; 22(4):225-33. PubMed ID: 12202841 [No Abstract] [Full Text] [Related]
15. [Mechanism of foam cell transformation of macrophages]. Kita T Seikagaku; 1988 Oct; 60(10):1163-8. PubMed ID: 3249073 [No Abstract] [Full Text] [Related]
16. Elevation of macrophage SeGSHPx gene expression prevents from its formation of foam cell and inhibits atherogenesis. Chen Y; Zhou M Chin Med J (Engl); 1996 Jan; 109(1):51-4. PubMed ID: 8758366 [No Abstract] [Full Text] [Related]
17. Lipoproteins and the pathogenesis of atherosclerosis. Steinberg D Circulation; 1987 Sep; 76(3):508-14. PubMed ID: 3621517 [TBL] [Abstract][Full Text] [Related]
18. acLDL binding and endocytosis by macrophages and macrophage foam cells in situ. Landers SC; Lewis JC Exp Mol Pathol; 1993 Aug; 59(1):38-50. PubMed ID: 8262164 [TBL] [Abstract][Full Text] [Related]
19. Macrophage foam cell formation during early atherogenesis is determined by the balance between pro-oxidants and anti-oxidants in arterial cells and blood lipoproteins. Aviram M Antioxid Redox Signal; 1999; 1(4):585-94. PubMed ID: 11233155 [TBL] [Abstract][Full Text] [Related]
20. Antioxidants and atherosclerosis: a current assessment. Chisolm GM Clin Cardiol; 1991 Feb; 14(2 Suppl 1):I25-30. PubMed ID: 2044256 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]