These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

351 related articles for article (PubMed ID: 18844988)

  • 1. Compressive properties of commercially available polyurethane foams as mechanical models for osteoporotic human cancellous bone.
    Patel PS; Shepherd DE; Hukins DW
    BMC Musculoskelet Disord; 2008 Oct; 9():137. PubMed ID: 18844988
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Apparent Young's modulus of vertebral cortico-cancellous bone specimens.
    El Masri F; Sapin de Brosses E; Rhissassi K; Skalli W; Mitton D
    Comput Methods Biomech Biomed Engin; 2012; 15(1):23-8. PubMed ID: 21749276
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biocompatibility of 17-4 PH stainless steel foam for implant applications.
    Mutlu I; Oktay E
    Biomed Mater Eng; 2011; 21(4):223-33. PubMed ID: 22182790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compressive and shear properties of commercially available polyurethane foams.
    Thompson MS; McCarthy ID; Lidgren L; Ryd L
    J Biomech Eng; 2003 Oct; 125(5):732-4. PubMed ID: 14618933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical properties of glenoid cancellous bone.
    Kalouche I; Crépin J; Abdelmoumen S; Mitton D; Guillot G; Gagey O
    Clin Biomech (Bristol, Avon); 2010 May; 25(4):292-8. PubMed ID: 20080324
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of a customized artificial osteoporotic bone model of the distal femur.
    Wähnert D; Hoffmeier KL; Stolarczyk Y; Fröber R; Hofmann GO; Mückley T
    J Biomater Appl; 2011 Nov; 26(4):451-64. PubMed ID: 20511385
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of screw insertion angle and thread type on the pullout strength of bone screws in normal and osteoporotic cancellous bone models.
    Patel PS; Shepherd DE; Hukins DW
    Med Eng Phys; 2010 Oct; 32(8):822-8. PubMed ID: 20558097
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of commercial rigid polyurethane foams used as bone analogs for implant testing.
    Calvert KL; Trumble KP; Webster TJ; Kirkpatrick LA
    J Mater Sci Mater Med; 2010 May; 21(5):1453-61. PubMed ID: 20162325
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A biomechanical study comparing a raft of 3.5 mm cortical screws with 6.5 mm cancellous screws in depressed tibial plateau fractures.
    Patil S; Mahon A; Green S; McMurtry I; Port A
    Knee; 2006 Jun; 13(3):231-5. PubMed ID: 16647262
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Variation of the mechanical properties of PMMA to suit osteoporotic cancellous bone.
    Boger A; Bisig A; Bohner M; Heini P; Schneider E
    J Biomater Sci Polym Ed; 2008; 19(9):1125-42. PubMed ID: 18727856
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intrinsic mechanical properties of trabecular calcaneus determined by finite-element models using 3D synchrotron microtomography.
    Follet H; Peyrin F; Vidal-Salle E; Bonnassie A; Rumelhart C; Meunier PJ
    J Biomech; 2007; 40(10):2174-83. PubMed ID: 17196599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of specimen load-bearing and free surface layers on the compressive mechanical properties of cellular materials.
    Zhu M; Keller TS; Spengler DM
    J Biomech; 1994 Jan; 27(1):57-66. PubMed ID: 8106536
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pedicle screw pull-out testing in polyurethane foam blocks: Effect of block orientation and density.
    Bennie S; Crowley JD; Wang T; Pelletier MH; Walsh WR
    Proc Inst Mech Eng H; 2024 Apr; 238(4):455-460. PubMed ID: 38480483
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Radius fracture repair using volumetrically expanding polyurethane bone cement.
    Boxberger JI; Adams DJ; Diaz-Doran V; Akkarapaka NB; Kolb ED
    J Hand Surg Am; 2011 Aug; 36(8):1294-302. PubMed ID: 21715102
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A mechanical comparison of the locking compression plate (LCP) and the low contact-dynamic compression plate (DCP) in an osteoporotic bone model.
    Snow M; Thompson G; Turner PG
    J Orthop Trauma; 2008 Feb; 22(2):121-5. PubMed ID: 18349780
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Difference in femoral head and neck material properties between osteoarthritis and osteoporosis.
    Sun SS; Ma HL; Liu CL; Huang CH; Cheng CK; Wei HW
    Clin Biomech (Bristol, Avon); 2008; 23 Suppl 1():S39-47. PubMed ID: 18187243
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A method for patient-specific evaluation of vertebral cancellous bone strength: in vitro validation.
    Diamant I; Shahar R; Masharawi Y; Gefen A
    Clin Biomech (Bristol, Avon); 2007 Mar; 22(3):282-91. PubMed ID: 17134802
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterising the compressive anisotropic properties of analogue bone using optical strain measurement.
    Marter AD; Dickinson AS; Pierron F; Fong YKK; Browne M
    Proc Inst Mech Eng H; 2019 Sep; 233(9):954-960. PubMed ID: 31210622
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The fracture toughness of cancellous bone.
    Cook RB; Zioupos P
    J Biomech; 2009 Sep; 42(13):2054-60. PubMed ID: 19643417
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of three formulations of a synthetic foam as models for a range of human cancellous bone types.
    Szivek JA; Thompson JD; Benjamin JB
    J Appl Biomater; 1995; 6(2):125-8. PubMed ID: 7640439
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.