These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
260 related articles for article (PubMed ID: 18845163)
1. Modeling distributions of flying insects: effective attraction radius of pheromone in two and three dimensions. Byers JA J Theor Biol; 2009 Jan; 256(1):81-9. PubMed ID: 18845163 [TBL] [Abstract][Full Text] [Related]
2. Analysis of vertical distributions and effective flight layers of insects: three-dimensional simulation of flying insects and catch at trap heights. Byers JA Environ Entomol; 2011 Oct; 40(5):1210-22. PubMed ID: 22251732 [TBL] [Abstract][Full Text] [Related]
3. Active space of pheromone plume and its relationship to effective attraction radius in applied models. Byers JA J Chem Ecol; 2008 Sep; 34(9):1134-45. PubMed ID: 18584255 [TBL] [Abstract][Full Text] [Related]
4. Estimating insect flight densities from attractive trap catches and flight height distributions. Byers JA J Chem Ecol; 2012 May; 38(5):592-601. PubMed ID: 22527056 [TBL] [Abstract][Full Text] [Related]
5. Effective attraction radius : A method for comparing species attractants and determining densities of flying insects. Byers JA; Anderbrant O; Löqvist J J Chem Ecol; 1989 Feb; 15(2):749-65. PubMed ID: 24271814 [TBL] [Abstract][Full Text] [Related]
6. The effect of undersowing cabbage with white clover on thrips infestation and flight activity. Pobozniak M; Wiech K Commun Agric Appl Biol Sci; 2005; 70(4):517-26. PubMed ID: 16628886 [TBL] [Abstract][Full Text] [Related]
7. Tsetse and other biting fly responses to Nzi traps baited with octenol, phenols and acetone. Mihok S; Carlson DA; Ndegwa PN Med Vet Entomol; 2007 Mar; 21(1):70-84. PubMed ID: 17373949 [TBL] [Abstract][Full Text] [Related]
8. Efficacy of pheromone trapping of the sweetpotato weevil (Coleoptera: Brentidae): based on dose, septum age, attractive radius, and mass trapping. Reddy GV; Wu S; Mendi RC; Miller RH Environ Entomol; 2014 Jun; 43(3):767-73. PubMed ID: 24709382 [TBL] [Abstract][Full Text] [Related]
9. Efficacy of the pear ester as a monitoring tool for codling moth Cydia pomonella (Lepidoptera: Tortricidae) in New Zealand apple orchards. Mitchell VJ; Manning LA; Cole L; Suckling DM; El-Sayed AM Pest Manag Sci; 2008 Mar; 64(3):209-14. PubMed ID: 18189264 [TBL] [Abstract][Full Text] [Related]
10. Attraction of the Euwallacea sp. near fornicatus (Coleoptera: Curculionidae) to Quercivorol and to Infestations in Avocado. Byers JA; Maoz Y; Levi-Zada A J Econ Entomol; 2017 Aug; 110(4):1512-1517. PubMed ID: 28541523 [TBL] [Abstract][Full Text] [Related]
11. A two-dimensional aerodynamic model of freely flying insects. Iima M J Theor Biol; 2007 Aug; 247(4):657-71. PubMed ID: 17482214 [TBL] [Abstract][Full Text] [Related]
12. Simulation and equation models of insect population control by pheromone-baited traps. Byers JA J Chem Ecol; 1993 Sep; 19(9):1939-56. PubMed ID: 24249370 [TBL] [Abstract][Full Text] [Related]
13. Methods for monitoring outdoor populations of house flies, Musca domestica L. (Diptera: Muscidae). Geden CJ J Vector Ecol; 2005 Dec; 30(2):244-50. PubMed ID: 16599159 [TBL] [Abstract][Full Text] [Related]
14. Hovering of model insects: simulation by coupling equations of motion with Navier-Stokes equations. Wu JH; Zhang YL; Sun M J Exp Biol; 2009 Oct; 212(Pt 20):3313-29. PubMed ID: 19801436 [TBL] [Abstract][Full Text] [Related]
15. Egomotion estimation with optic flow and air velocity sensors. Rutkowski AJ; Miller MM; Quinn RD; Willis MA Biol Cybern; 2011 Jun; 104(6):351-67. PubMed ID: 21728014 [TBL] [Abstract][Full Text] [Related]
16. Simulation of mating disruption and mass trapping with competitive attraction and camouflage. Byers JA Environ Entomol; 2007 Dec; 36(6):1328-38. PubMed ID: 18284760 [TBL] [Abstract][Full Text] [Related]
17. Flight activity of the blowflies, Calliphora vomitoria and Lucilia sericata, in the dark. Wooldridge J; Scrase L; Wall R Forensic Sci Int; 2007 Oct; 172(2-3):94-7. PubMed ID: 17267152 [TBL] [Abstract][Full Text] [Related]
18. Flight stabilization control of a hovering model insect. Sun M; Wang JK J Exp Biol; 2007 Aug; 210(Pt 15):2714-22. PubMed ID: 17644686 [TBL] [Abstract][Full Text] [Related]
19. Control and regulatory mechanisms associated with thermogenesis in flying insects and birds. Loli D; Bicudo JE Biosci Rep; 2005; 25(3-4):149-80. PubMed ID: 16283551 [TBL] [Abstract][Full Text] [Related]
20. On mathematical modelling of insect flight dynamics in the context of micro air vehicles. Zbikowski R; Ansari SA; Knowles K Bioinspir Biomim; 2006 Jun; 1(2):R26-37. PubMed ID: 17671303 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]