These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 18845227)

  • 1. Fitness and action monitoring: evidence for improved cognitive flexibility in young adults.
    Themanson JR; Pontifex MB; Hillman CH
    Neuroscience; 2008 Nov; 157(2):319-28. PubMed ID: 18845227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cardiorespiratory fitness and acute aerobic exercise effects on neuroelectric and behavioral measures of action monitoring.
    Themanson JR; Hillman CH
    Neuroscience; 2006 Aug; 141(2):757-767. PubMed ID: 16713115
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aerobic fitness and cognitive development: Event-related brain potential and task performance indices of executive control in preadolescent children.
    Hillman CH; Buck SM; Themanson JR; Pontifex MB; Castelli DM
    Dev Psychol; 2009 Jan; 45(1):114-29. PubMed ID: 19209995
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cardiorespiratory fitness and the flexible modulation of cognitive control in preadolescent children.
    Pontifex MB; Raine LB; Johnson CR; Chaddock L; Voss MW; Cohen NJ; Kramer AF; Hillman CH
    J Cogn Neurosci; 2011 Jun; 23(6):1332-45. PubMed ID: 20521857
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Association of Childhood Fitness to Proactive and Reactive Action Monitoring.
    Kamijo K; Bae S; Masaki H
    PLoS One; 2016; 11(3):e0150691. PubMed ID: 26939019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of social exclusion on the ERN and the cognitive control of action monitoring.
    Themanson JR; Ball AB; Khatcherian SM; Rosen PJ
    Psychophysiology; 2014 Mar; 51(3):215–25. PubMed ID: 25003166
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Error-monitoring across social and affective processing contexts.
    Suzuki T; Ait Oumeziane B; Novak K; Samuel DB; Foti D
    Int J Psychophysiol; 2020 Apr; 150():37-49. PubMed ID: 32004658
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Age and physical activity influences on action monitoring during task switching.
    Themanson JR; Hillman CH; Curtin JJ
    Neurobiol Aging; 2006 Sep; 27(9):1335-45. PubMed ID: 16102874
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-efficacy effects on neuroelectric and behavioral indices of action monitoring in older adults.
    Themanson JR; Hillman CH; McAuley E; Buck SM; Doerksen SE; Morris KS; Pontifex MB
    Neurobiol Aging; 2008 Jul; 29(7):1111-22. PubMed ID: 17303288
    [TBL] [Abstract][Full Text] [Related]  

  • 10. From cognitive motor preparation to visual processing: The benefits of childhood fitness to brain health.
    Berchicci M; Pontifex MB; Drollette ES; Pesce C; Hillman CH; Di Russo F
    Neuroscience; 2015 Jul; 298():211-9. PubMed ID: 25907444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aerobic fitness and intra-individual variability of neurocognition in preadolescent children.
    Moore RD; Wu CT; Pontifex MB; O'Leary KC; Scudder MR; Raine LB; Johnson CR; Hillman CH
    Brain Cogn; 2013 Jun; 82(1):43-57. PubMed ID: 23511845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alterations in error-related brain activity and post-error behavior over time.
    Themanson JR; Rosen PJ; Pontifex MB; Hillman CH; McAuley E
    Brain Cogn; 2012 Nov; 80(2):257-65. PubMed ID: 22940400
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The relation of aerobic fitness to neuroelectric indices of cognitive and motor task preparation.
    Kamijo K; O'Leary KC; Pontifex MB; Themanson JR; Hillman CH
    Psychophysiology; 2010 Sep; 47(5):814-21. PubMed ID: 20345598
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Common mechanisms in error monitoring and action effect monitoring.
    Steinhauser R; Wirth R; Kunde W; Janczyk M; Steinhauser M
    Cogn Affect Behav Neurosci; 2018 Dec; 18(6):1159-1171. PubMed ID: 30069791
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The relationship between cognitive performance and electrophysiological indices of performance monitoring.
    Larson MJ; Clayson PE
    Cogn Affect Behav Neurosci; 2011 Jun; 11(2):159-71. PubMed ID: 21264645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The negative association of childhood obesity to cognitive control of action monitoring.
    Kamijo K; Pontifex MB; Khan NA; Raine LB; Scudder MR; Drollette ES; Evans EM; Castelli DM; Hillman CH
    Cereb Cortex; 2014 Mar; 24(3):654-62. PubMed ID: 23146965
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A neurophysiological study of the detrimental effects of alprazolam on human action monitoring.
    Riba J; Rodríguez-Fornells A; Münte TF; Barbanoj MJ
    Brain Res Cogn Brain Res; 2005 Oct; 25(2):554-65. PubMed ID: 16168630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Combined EEG-fNIRS Study Investigating Mechanisms Underlying the Association between Aerobic Fitness and Inhibitory Control in Young Adults.
    Ludyga S; Mücke M; Colledge FMA; Pühse U; Gerber M
    Neuroscience; 2019 Nov; 419():23-33. PubMed ID: 31487542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acute effects of alcohol on error-elicited negative affect during a cognitive control task.
    Cofresí RU; Bartholow BD
    Psychopharmacology (Berl); 2020 Nov; 237(11):3383-3397. PubMed ID: 32944790
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conflict and performance monitoring throughout the lifespan: An event-related potential (ERP) and temporospatial component analysis.
    Clawson A; Clayson PE; Keith CM; Catron C; Larson MJ
    Biol Psychol; 2017 Mar; 124():87-99. PubMed ID: 28143802
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.