These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 18845278)

  • 1. Regulation of mammalian nitric oxide synthases by electrostatic interactions in the linker region of calmodulin.
    Spratt DE; Israel OK; Taiakina V; Guillemette JG
    Biochim Biophys Acta; 2008 Dec; 1784(12):2065-70. PubMed ID: 18845278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FRET conformational analysis of calmodulin binding to nitric oxide synthase peptides and enzymes.
    Spratt DE; Taiakina V; Palmer M; Guillemette JG
    Biochemistry; 2008 Nov; 47(46):12006-17. PubMed ID: 18947187
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Binding and activation of nitric oxide synthase isozymes by calmodulin EF hand pairs.
    Spratt DE; Newman E; Mosher J; Ghosh DK; Salerno JC; Guillemette JG
    FEBS J; 2006 Apr; 273(8):1759-71. PubMed ID: 16623711
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential binding of calmodulin domains to constitutive and inducible nitric oxide synthase enzymes.
    Spratt DE; Taiakina V; Palmer M; Guillemette JG
    Biochemistry; 2007 Jul; 46(28):8288-300. PubMed ID: 17580957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and dynamics of calmodulin (CaM) bound to nitric oxide synthase peptides: effects of a phosphomimetic CaM mutation.
    Piazza M; Futrega K; Spratt DE; Dieckmann T; Guillemette JG
    Biochemistry; 2012 May; 51(17):3651-61. PubMed ID: 22486744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural Consequences of Calmodulin EF Hand Mutations.
    Piazza M; Taiakina V; Dieckmann T; Guillemette JG
    Biochemistry; 2017 Feb; 56(7):944-956. PubMed ID: 28121131
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics of nitric oxide synthase-calmodulin interactions at physiological calcium concentrations.
    Piazza M; Guillemette JG; Dieckmann T
    Biochemistry; 2015 Mar; 54(11):1989-2000. PubMed ID: 25751535
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calcium-deficient calmodulin binding and activation of neuronal and inducible nitric oxide synthases.
    Spratt DE; Taiakina V; Guillemette JG
    Biochim Biophys Acta; 2007 Oct; 1774(10):1351-8. PubMed ID: 17890165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural basis for endothelial nitric oxide synthase binding to calmodulin.
    Aoyagi M; Arvai AS; Tainer JA; Getzoff ED
    EMBO J; 2003 Feb; 22(4):766-75. PubMed ID: 12574113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical shift assignments of calmodulin constructs with EF hand mutations.
    Piazza M; Guillemette JG; Dieckmann T
    Biomol NMR Assign; 2016 Apr; 10(1):193-8. PubMed ID: 26743203
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Binding kinetics of calmodulin with target peptides of three nitric oxide synthase isozymes.
    Wu G; Berka V; Tsai AL
    J Inorg Biochem; 2011 Sep; 105(9):1226-37. PubMed ID: 21763233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of an isoform-specific serine residue in FMN-heme electron transfer in inducible nitric oxide synthase.
    Li W; Fan W; Chen L; Elmore BO; Piazza M; Guillemette JG; Feng C
    J Biol Inorg Chem; 2012 Jun; 17(5):675-85. PubMed ID: 22407542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The formation of a complex between calmodulin and neuronal nitric oxide synthase is determined by ESI-MS.
    Shirran S; Garnaud P; Daff S; McMillan D; Barran P
    J R Soc Interface; 2005 Dec; 2(5):465-76. PubMed ID: 16849206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of an isoform-specific residue at the calmodulin-heme (NO synthase) interface in the FMN - heme electron transfer.
    Li J; Zheng H; Wang W; Miao Y; Sheng Y; Feng C
    FEBS Lett; 2018 Jul; 592(14):2425-2431. PubMed ID: 29904908
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Site-specific modification of calmodulin Ca²(+) affinity tunes the skeletal muscle ryanodine receptor activation profile.
    Jiang J; Zhou Y; Zou J; Chen Y; Patel P; Yang JJ; Balog EM
    Biochem J; 2010 Nov; 432(1):89-99. PubMed ID: 20815817
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular architecture of mammalian nitric oxide synthases.
    Campbell MG; Smith BC; Potter CS; Carragher B; Marletta MA
    Proc Natl Acad Sci U S A; 2014 Sep; 111(35):E3614-23. PubMed ID: 25125509
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Non-Canonical Calmodulin Target Motif Comprising a Polybasic Region and Lipidated Terminal Residue Regulates Localization.
    Grant BMM; Enomoto M; Ikura M; Marshall CB
    Int J Mol Sci; 2020 Apr; 21(8):. PubMed ID: 32326637
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the structure and intermolecular interactions between the connexin 32 carboxyl-terminal domain and the protein partners synapse-associated protein 97 and calmodulin.
    Stauch K; Kieken F; Sorgen P
    J Biol Chem; 2012 Aug; 287(33):27771-88. PubMed ID: 22718765
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The structure of a calmodulin mutant with a deletion in the central helix: implications for molecular recognition and protein binding.
    Tabernero L; Taylor DA; Chandross RJ; VanBerkum MF; Means AR; Quiocho FA; Sack JS
    Structure; 1997 May; 5(5):613-22. PubMed ID: 9195880
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calcium-binding sites of calmodulin and electron transfer by inducible nitric oxide synthase.
    Gribovskaja I; Brownlow KC; Dennis SJ; Rosko AJ; Marletta MA; Stevens-Truss R
    Biochemistry; 2005 May; 44(20):7593-601. PubMed ID: 15896003
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.