BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 18845610)

  • 41. Muscle aging is associated with compromised Ca2+ spark signaling and segregated intracellular Ca2+ release.
    Weisleder N; Brotto M; Komazaki S; Pan Z; Zhao X; Nosek T; Parness J; Takeshima H; Ma J
    J Cell Biol; 2006 Aug; 174(5):639-45. PubMed ID: 16943181
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A skeletal muscle ryanodine receptor interaction domain in triadin.
    Wium E; Dulhunty AF; Beard NA
    PLoS One; 2012; 7(8):e43817. PubMed ID: 22937102
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The elementary events of Ca2+ release elicited by membrane depolarization in mammalian muscle.
    Csernoch L; Zhou J; Stern MD; Brum G; Ríos E
    J Physiol; 2004 May; 557(Pt 1):43-58. PubMed ID: 14990680
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Triadin deletion induces impaired skeletal muscle function.
    Oddoux S; Brocard J; Schweitzer A; Szentesi P; Giannesini B; Brocard J; Fauré J; Pernet-Gallay K; Bendahan D; Lunardi J; Csernoch L; Marty I
    J Biol Chem; 2009 Dec; 284(50):34918-29. PubMed ID: 19843516
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Triadin is a critical determinant of cellular Ca cycling and contractility in the heart.
    Kirchhefer U; Klimas J; Baba HA; Buchwalow IB; Fabritz L; Hüls M; Matus M; Müller FU; Schmitz W; Neumann J
    Am J Physiol Heart Circ Physiol; 2007 Nov; 293(5):H3165-74. PubMed ID: 17890426
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Uncoupling store-operated Ca2+ entry and altered Ca2+ release from sarcoplasmic reticulum through silencing of junctophilin genes.
    Hirata Y; Brotto M; Weisleder N; Chu Y; Lin P; Zhao X; Thornton A; Komazaki S; Takeshima H; Ma J; Pan Z
    Biophys J; 2006 Jun; 90(12):4418-27. PubMed ID: 16565048
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ca2+ sparks are initiated by Ca2+ entry in embryonic mouse skeletal muscle and decrease in frequency postnatally.
    Chun LG; Ward CW; Schneider MF
    Am J Physiol Cell Physiol; 2003 Sep; 285(3):C686-97. PubMed ID: 12724135
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Assessment of calcium sparks in intact skeletal muscle fibers.
    Park KH; Weisleder N; Zhou J; Gumpper K; Zhou X; Duann P; Ma J; Lin PH
    J Vis Exp; 2014 Feb; (84):e50898. PubMed ID: 24638093
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Detection of calcium sparks in intact and permeabilized skeletal muscle fibers.
    Weisleder N; Zhou J; Ma J
    Methods Mol Biol; 2012; 798():395-410. PubMed ID: 22130850
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Triadin regulates cardiac muscle couplon structure and microdomain Ca(2+) signalling: a path towards ventricular arrhythmias.
    Chopra N; Knollmann BC
    Cardiovasc Res; 2013 May; 98(2):187-91. PubMed ID: 23396608
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Self-aggregation of triadin in the sarcoplasmic reticulum of rabbit skeletal muscle.
    Froemming GR; Murray BE; Ohlendieck K
    Biochim Biophys Acta; 1999 Apr; 1418(1):197-205. PubMed ID: 10209224
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Knocking down type 2 but not type 1 calsequestrin reduces calcium sequestration and release in C2C12 skeletal muscle myotubes.
    Wang Y; Xu L; Duan H; Pasek DA; Eu JP; Meissner G
    J Biol Chem; 2006 Jun; 281(22):15572-81. PubMed ID: 16595676
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effects of anti-triadin antibody on Ca2+ release from sarcoplasmic reticulum.
    Brandt NR; Caswell AH; Brunschwig JP; Kang JJ; Antoniu B; Ikemoto N
    FEBS Lett; 1992 Mar; 299(1):57-9. PubMed ID: 1544475
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Calsequestrin (CASQ1) rescues function and structure of calcium release units in skeletal muscles of CASQ1-null mice.
    Tomasi M; Canato M; Paolini C; Dainese M; Reggiani C; Volpe P; Protasi F; Nori A
    Am J Physiol Cell Physiol; 2012 Feb; 302(3):C575-86. PubMed ID: 22049211
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Inefficient glycosylation leads to high steady-state levels of actively degrading cardiac triadin-1.
    Milstein ML; McFarland TP; Marsh JD; Cala SE
    J Biol Chem; 2008 Jan; 283(4):1929-35. PubMed ID: 18025088
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Topology of Homer 1c and Homer 1a in C2C12 myotubes and transgenic skeletal muscle fibers.
    Volpe P; Sandri C; Bortoloso E; Valle G; Nori A
    Biochem Biophys Res Commun; 2004 Apr; 316(3):884-92. PubMed ID: 15033484
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Hypoxia reprograms calcium signaling and regulates myoglobin expression.
    Kanatous SB; Mammen PP; Rosenberg PB; Martin CM; White MD; Dimaio JM; Huang G; Muallem S; Garry DJ
    Am J Physiol Cell Physiol; 2009 Mar; 296(3):C393-402. PubMed ID: 19005161
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Calcium-dependent inactivation terminates calcium release in skeletal muscle of amphibians.
    Ríos E; Zhou J; Brum G; Launikonis BS; Stern MD
    J Gen Physiol; 2008 Apr; 131(4):335-48. PubMed ID: 18347079
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Identification of triadin 1 as the predominant triadin isoform expressed in mammalian myocardium.
    Kobayashi YM; Jones LR
    J Biol Chem; 1999 Oct; 274(40):28660-8. PubMed ID: 10497235
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Triadin regulation of the ryanodine receptor complex.
    Marty I
    J Physiol; 2015 Aug; 593(15):3261-6. PubMed ID: 26228554
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.