BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 18845774)

  • 1. Two faces of nitric oxide: implications for cellular mechanisms of oxygen toxicity.
    Allen BW; Demchenko IT; Piantadosi CA
    J Appl Physiol (1985); 2009 Feb; 106(2):662-7. PubMed ID: 18845774
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contributions of nitric oxide synthase isoforms to pulmonary oxygen toxicity, local vs. mediated effects.
    Demchenko IT; Atochin DN; Gutsaeva DR; Godfrey RR; Huang PL; Piantadosi CA; Allen BW
    Am J Physiol Lung Cell Mol Physiol; 2008 May; 294(5):L984-90. PubMed ID: 18326824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hyperoxia sensing: from molecular mechanisms to significance in disease.
    Gore A; Muralidhar M; Espey MG; Degenhardt K; Mantell LL
    J Immunotoxicol; 2010; 7(4):239-54. PubMed ID: 20586583
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acute hypercapnic hyperoxia stimulates reactive species production in the caudal solitary complex of rat brain slices but does not induce oxidative stress.
    Ciarlone GE; Dean JB
    Am J Physiol Cell Physiol; 2016 Dec; 311(6):C1027-C1039. PubMed ID: 27733363
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Normobaric hyperoxia stimulates superoxide and nitric oxide production in the caudal solitary complex of rat brain slices.
    Ciarlone GE; Dean JB
    Am J Physiol Cell Physiol; 2016 Dec; 311(6):C1014-C1026. PubMed ID: 27733362
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular mechanisms underlying hyperoxia acute lung injury.
    Dias-Freitas F; Metelo-Coimbra C; Roncon-Albuquerque R
    Respir Med; 2016 Oct; 119():23-28. PubMed ID: 27692143
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of factors involved in the development of central nervous system and pulmonary oxygen toxicity in the rat.
    Eynan M; Krinsky N; Biram A; Arieli Y; Arieli R
    Brain Res; 2014 Jul; 1574():77-83. PubMed ID: 24928619
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The endotoxin-pretreated, oxygen-adapted rat model in hyperbaric hyperoxia.
    Jackson RM; Pisarello JB
    Aviat Space Environ Med; 1984 Aug; 55(8):709-14. PubMed ID: 6487206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advances in the therapy of hyperoxia-induced lung injury: findings from animal models.
    Lv R; Zheng J; Ye Z; Sun X; Tao H; Liu K; Li R; Xu W; Liu W; Zhang R
    Undersea Hyperb Med; 2014; 41(3):183-202. PubMed ID: 24984313
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Reactive oxygen and nitrogen species in inflammatory process].
    Rutkowski R; Pancewicz SA; Rutkowski K; Rutkowska J
    Pol Merkur Lekarski; 2007 Aug; 23(134):131-6. PubMed ID: 18044345
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphodiesterase-5 inhibitors oppose hyperoxic vasoconstriction and accelerate seizure development in rats exposed to hyperbaric oxygen.
    Demchenko IT; Ruehle A; Allen BW; Vann RD; Piantadosi CA
    J Appl Physiol (1985); 2009 Apr; 106(4):1234-42. PubMed ID: 19179645
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Repetitive hyperbaric oxygen exposures enhance sensitivity to convulsion by upregulation of eNOS and nNOS.
    Liu W; Li J; Sun X; Liu K; Zhang JH; Xu W; Tao H
    Brain Res; 2008 Mar; 1201():128-34. PubMed ID: 18342297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondrial glutathione and oxidative stress: implications for pulmonary oxygen toxicity in premature infants.
    O'Donovan DJ; Fernandes CJ
    Mol Genet Metab; 2000; 71(1-2):352-8. PubMed ID: 11001827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intrasynaptosomal free calcium and nitric oxide metabolism in central nervous system oxygen toxicity.
    Wang WJ; Ho XP; Yan YL; Yan TH; Li CL
    Aviat Space Environ Med; 1998 Jun; 69(6):551-5. PubMed ID: 9641400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relationship between protein nitration and oxidation and development of hyperoxic seizures.
    Chavko M; Auker CR; McCarron RM
    Nitric Oxide; 2003 Aug; 9(1):18-23. PubMed ID: 14559428
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular targets against mustard toxicity: implication of cell surface receptors, peroxynitrite production, and PARP activation.
    Korkmaz A; Yaren H; Topal T; Oter S
    Arch Toxicol; 2006 Oct; 80(10):662-70. PubMed ID: 16552503
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of the brain's vascular responses to oxygen.
    Demchenko IT; Oury TD; Crapo JD; Piantadosi CA
    Circ Res; 2002 Nov; 91(11):1031-7. PubMed ID: 12456489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitric oxide in paraquat-mediated toxicity: A review.
    Morán JM; Ortiz-Ortiz MA; Ruiz-Mesa LM; Fuentes JM
    J Biochem Mol Toxicol; 2010; 24(6):402-9. PubMed ID: 21182169
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redox-dependent effects of nitric oxide on microvascular integrity in oxygen-induced retinopathy.
    Beauchamp MH; Sennlaub F; Speranza G; Gobeil F; Checchin D; Kermorvant-Duchemin E; Abran D; Hardy P; Lachapelle P; Varma DR; Chemtob S
    Free Radic Biol Med; 2004 Dec; 37(11):1885-94. PubMed ID: 15528047
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human brain blood flow and metabolism during isocapnic hyperoxia: the role of reactive oxygen species.
    Mattos JD; Campos MO; Rocha MP; Mansur DE; Rocha HNM; Garcia VP; Batista G; Alvares TS; Oliveira GV; Souza MV; Videira RLR; Rocha NG; Secher NH; Nóbrega ACL; Fernandes IA
    J Physiol; 2019 Feb; 597(3):741-755. PubMed ID: 30506968
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.