These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 18845860)

  • 1. Biofilm formation by a biotechnologically important tropical marine yeast isolate, Yarrowia lipolytica NCIM 3589.
    Dusane DH; Nancharaiah YV; Venugopalan VP; Kumar AR; Zinjarde SS
    Water Sci Technol; 2008; 58(6):1221-9. PubMed ID: 18845860
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biofilm formation by a biotechnologically important tropical marine yeast isolate, Yarrowia lipolytica NCIM 3589.
    Dusane DH; Nancharaiah YV; Venugopalan VP; Kumar AR; Zinjarde SS
    Water Sci Technol; 2008; 58(12):2467-75. PubMed ID: 19092226
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of biomass and gold salt concentration on nanoparticle synthesis by the tropical marine yeast Yarrowia lipolytica NCIM 3589.
    Pimprikar PS; Joshi SS; Kumar AR; Zinjarde SS; Kulkarni SK
    Colloids Surf B Biointerfaces; 2009 Nov; 74(1):309-16. PubMed ID: 19700266
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Different effectors of dimorphism in Yarrowia lipolytica.
    Ruiz-Herrera J; Sentandreu R
    Arch Microbiol; 2002 Dec; 178(6):477-83. PubMed ID: 12420169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heavy metal tolerance in marine strains of Yarrowia lipolytica.
    Bankar A; Zinjarde S; Shinde M; Gopalghare G; Ravikumar A
    Extremophiles; 2018 Jul; 22(4):617-628. PubMed ID: 29594464
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Emulsifier from a tropical marine yeast, yarrowia lipolytica NCIM 3589.
    Zinjarde SS; Pant A
    J Basic Microbiol; 2002; 42(1):67-73. PubMed ID: 11925762
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disruption of fungal and bacterial biofilms by lauroyl glucose.
    Dusane DH; Rajput JK; Kumar AR; Nancharaiah YV; Venugopalan VP; Zinjarde SS
    Lett Appl Microbiol; 2008 Nov; 47(5):374-9. PubMed ID: 19146524
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morphogenetic behavior of tropical marine yeast Yarrowia lipolytica in response to hydrophobic substrates.
    Zinjarde SS; Kale BV; Vishwasrao PV; Kumar AR
    J Microbiol Biotechnol; 2008 Sep; 18(9):1522-8. PubMed ID: 18852507
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 2,4,6-trinitrotoluene transformation by a tropical marine yeast, Yarrowia lipolytica NCIM 3589.
    Jain MR; Zinjarde SS; Deobagkar DD; Deobagkar DN
    Mar Pollut Bull; 2004 Nov; 49(9-10):783-8. PubMed ID: 15530522
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rhamnolipid mediated disruption of marine Bacillus pumilus biofilms.
    Dusane DH; Nancharaiah YV; Zinjarde SS; Venugopalan VP
    Colloids Surf B Biointerfaces; 2010 Nov; 81(1):242-8. PubMed ID: 20688490
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth of a tropical marine yeast Yarrowia lipolytica NCIM 3589 on bromoalkanes: relevance of cell size and cell surface properties.
    Vatsal A; Zinjarde SS; Kumar AR
    Yeast; 2011 Oct; 28(10):721-32. PubMed ID: 21905092
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of seawater ozonation on biofilm development in aquaculture tanks.
    Wietz M; Hall MR; Høj L
    Syst Appl Microbiol; 2009 Jul; 32(4):266-77. PubMed ID: 19446976
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Adaptation of the yeast Yarrowia lipolytica to heat shock].
    Biriukova EN; Medentsev AG; Arinbasarova AIu; Akimenko VK
    Mikrobiologiia; 2007; 76(2):184-90. PubMed ID: 17583214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Roles of curli, cellulose and BapA in Salmonella biofilm morphology studied by atomic force microscopy.
    Jonas K; Tomenius H; Kader A; Normark S; Römling U; Belova LM; Melefors O
    BMC Microbiol; 2007 Jul; 7():70. PubMed ID: 17650335
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biofilm formation and interactions of bacterial strains found in wastewater treatment systems.
    Andersson S; Kuttuva Rajarao G; Land CJ; Dalhammar G
    FEMS Microbiol Lett; 2008 Jun; 283(1):83-90. PubMed ID: 18422628
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A flow-lane incubator for studying freshwater and marine phototrophic biofilms.
    Zippel B; Rijstenbil J; Neu TR
    J Microbiol Methods; 2007 Aug; 70(2):336-45. PubMed ID: 17590463
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Community-level response of coastal microbial biofilms to ocean acidification in a natural carbon dioxide vent ecosystem.
    Lidbury I; Johnson V; Hall-Spencer JM; Munn CB; Cunliffe M
    Mar Pollut Bull; 2012 May; 64(5):1063-6. PubMed ID: 22414852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biofilm formation of Bdellovibrio bacteriovorus host-independent derivatives.
    Medina AA; Kadouri DE
    Res Microbiol; 2009 Apr; 160(3):224-31. PubMed ID: 19223013
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface properties of Yarrowia lipolytica and their relevance to gamma-decalactone formation from methyl ricinoleate.
    Aguedo M; Waché Y; Belin JM; Teixeira JA
    Biotechnol Lett; 2005 Mar; 27(6):417-22. PubMed ID: 15834807
    [TBL] [Abstract][Full Text] [Related]  

  • 20. HOG-Independent Osmoprotection by Erythritol in Yeast
    Rzechonek DA; Szczepańczyk M; Wang G; Borodina I; Mirończuk AM
    Genes (Basel); 2020 Nov; 11(12):. PubMed ID: 33261148
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.