These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

358 related articles for article (PubMed ID: 188460)

  • 21. Hormonal interactions in the uterus: inhibition of isoproterenol-induced accumulation of adenosine 3':5'-cyclic monophosphate by oxytocin and prostaglandins.
    Bhalla RC; Sanborn BM; Korenman SG
    Proc Natl Acad Sci U S A; 1972 Dec; 69(12):3761-4. PubMed ID: 4345507
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reduced sensitivity to catecholamine in Werner's syndrome fibroblasts.
    Bannai S; Okamura N; Ishii T; Sugita Y; Bannai C; Yamashita K
    Biochem Biophys Res Commun; 1987 May; 145(1):183-9. PubMed ID: 3036117
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Differential effects of prostaglandin synthetase inhibitors on prostaglandin E2 binding and on prostaglandin- or cholera toxin-induced cyclic AMP accumulation in the rabbit uterus.
    Zor U; Koch R; Naor Z
    Adv Prostaglandin Thromboxane Res; 1976; 1():331-5. PubMed ID: 187046
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Vascular adenylate cyclase: role of age and guanine nucleotide activation.
    Cohen ML; Blume AS; Berkowitz BA
    Blood Vessels; 1977; 14(1):25-42. PubMed ID: 189861
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Antagonistic effects of prostaglandin E1 and nicotinic acid on the human fat cell adenylate cyclase.
    Kather H; Simon B
    Res Commun Chem Pathol Pharmacol; 1979 Jan; 23(1):81-8. PubMed ID: 441519
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effect of catecholamines and prostaglandins upon human and rat erythrocytes.
    Rasmussen H; Lake W; Allen JE
    Biochim Biophys Acta; 1975 Nov; 411(1):63-73. PubMed ID: 170999
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The differentiation of avian skeletal muscle in culture: changes in responsiveness of adenylyl cyclase to prostaglandin E1 and adrenergic agonists.
    Curtis DH; Zalin RJ
    J Cell Physiol; 1985 May; 123(2):219-27. PubMed ID: 2858489
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hormonal control of cyclic AMP turnover in isolated fat cells.
    Häring HU; Renner R; Hepp KD
    Mol Cell Endocrinol; 1976; 5(3-4):295-302. PubMed ID: 182581
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modulation of adenylate cyclase/cyclic AMP response by thyrotropin and prostaglandin E2 in cultured thyroid cells. 2. Positive regulation.
    Takasu N; Charrier B; Mauchamp J; Lissitzky S
    Eur J Biochem; 1978 Sep; 90(1):139-46. PubMed ID: 213270
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The interaction between the adenylate cyclase system and insulin-stimulated glucose transport. Evidence for the importance of both cyclic-AMP-dependent and -independent mechanisms.
    Lönnroth P; Davies JI; Lönnroth I; Smith U
    Biochem J; 1987 May; 243(3):789-95. PubMed ID: 2821992
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inhibition of catecholamine-stimulated adenylate cyclase in fat cells by local anaesthetics.
    Hepp KD; Rinninger J; Langley J; Renner R
    FEBS Lett; 1978 Jul; 91(2):325-8. PubMed ID: 210045
    [No Abstract]   [Full Text] [Related]  

  • 32. Evidence in intact cells for an involvement of GTP in the activation of adenylate cyclase.
    Johnson GS; Mukku VR
    J Biol Chem; 1979 Jan; 254(1):95-100. PubMed ID: 214445
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Deficient guanine nucleotide regulatory unit activity in cultured fibroblast membranes from patients with pseudohypoparathyroidism type I. a cause of impaired synthesis of 3',5'-cyclic AMP by intact and broken cells.
    Levine MA; Eil C; Downs RW; Spiegel AM
    J Clin Invest; 1983 Jul; 72(1):316-24. PubMed ID: 6308048
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of prostaglandins on rat renal adenylate cyclase-cyclic AMP systems.
    Zenser TV; Davis BB
    Prostaglandins; 1977 Sep; 14(3):437-47. PubMed ID: 198851
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhanced GTP-dependent activities of the adenylate cyclase system: basis for increased hormonal responsiveness.
    Anderson WB; Mukku VR; Johnson GS
    Arch Biochem Biophys; 1979 Oct; 197(2):599-606. PubMed ID: 228602
    [No Abstract]   [Full Text] [Related]  

  • 36. Inhibition of adenylate cyclase by adenosine analogues in preparations of broken and intact human platelets. Evidence for the unidirectional control of platelet function by cyclic AMP.
    Haslam RJ; Davidson MM; Desjardins JV
    Biochem J; 1978 Oct; 176(1):83-95. PubMed ID: 215136
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spin-labeled stearates as probes for microenvironment of murine thymocyte adenylate cyclase-cyclic adenosine 3':5'-monophosphate system.
    Zenser TV; Petrella VJ; Hughes F
    J Biol Chem; 1976 Dec; 251(23):7431-6. PubMed ID: 187588
    [TBL] [Abstract][Full Text] [Related]  

  • 38. On the role of cyclic AMP in the cytotoxic effect of fluoride.
    Holland RI; Hongslo JK; Christoffersen T
    Acta Pharmacol Toxicol (Copenh); 1980 Jan; 46(1):66-72. PubMed ID: 6244715
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Agonist-specific refractoriness induced by isoproterenol. Studies with mutant cells.
    Shear M; Insel PA; Melmon KL; Coffino P
    J Biol Chem; 1976 Dec; 251(23):7572-6. PubMed ID: 187593
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of prostaglandins and catecholamines on rat spleen adenylate cyclase in vitro.
    Wincek TJ; Sweat FW
    Biochim Biophys Acta; 1976 Jul; 437(2):571-6. PubMed ID: 952932
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.