These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 18846172)

  • 21. Metal-covered photonic bandgap multilayer for infrared hollow waveguides.
    Katagiri T; Matsuura Y; Miyagi M
    Appl Opt; 2002 Dec; 41(36):7603-6. PubMed ID: 12510926
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Environmentally-stable femtosecond ytterbium fiber laser with birefringent photonic bandgap fiber.
    Lim H; Chong A; Wise FW
    Opt Express; 2005 May; 13(9):3460-4. PubMed ID: 19495249
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Femtosecond soliton mode-locked laser based on ytterbium-doped photonic bandgap fiber.
    Isomäki A; Okhotnikov OG
    Opt Express; 2006 Oct; 14(20):9238-43. PubMed ID: 19529305
    [TBL] [Abstract][Full Text] [Related]  

  • 24. All-fiber chirped pulse amplification using highly-dispersive air-core photonic bandgap fiber.
    de Matos C; Taylor J; Hansen T; Hansen K; Broeng J
    Opt Express; 2003 Nov; 11(22):2832-7. PubMed ID: 19471402
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A 158 fs 5.3 nJ fiber-laser system at 1 microm using photonic bandgap fibers for dispersion control and pulse compression.
    Nielsen CK; Jespersen KG; Keiding SR
    Opt Express; 2006 Jun; 14(13):6063-8. PubMed ID: 19516777
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Slow light and chromatic temporal dispersion in photonic crystal waveguides using femtosecond time of flight.
    Finlayson CE; Cattaneo F; Perney NM; Baumberg JJ; Netti MC; Zoorob ME; Charlton MD; Parker GJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jan; 73(1 Pt 2):016619. PubMed ID: 16486307
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Properties of a hollow-core photonic bandgap fiber at 850 nm wavelength.
    Bouwmans G; Luan F; Knight J; St J Russell P; Farr L; Mangan B; Sabert H
    Opt Express; 2003 Jul; 11(14):1613-20. PubMed ID: 19466039
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Photonic bandgaps of different unit cells in the basic structural unit of germanium-based two-dimensional decagonal photonic quasi-crystals.
    Liu J; Fan Z; Xiao H; Zhang W; Guan C; Yuan L
    Appl Opt; 2011 Aug; 50(24):4868-72. PubMed ID: 21857712
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bandwidth enhancement by differential mode attenuation in multimode photonic crystal Bragg fibers.
    Skorobogatiy M; Guo N
    Opt Lett; 2007 Apr; 32(8):900-2. PubMed ID: 17375147
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Omnidirectional nonreciprocal absorber realized by the magneto-optical hypercrystal.
    Hu S; Song J; Guo Z; Jiang H; Deng F; Dong L; Chen H
    Opt Express; 2022 Mar; 30(7):12104-12119. PubMed ID: 35473139
    [TBL] [Abstract][Full Text] [Related]  

  • 31. All-fiber ytterbium soliton mode-locked laser with dispersion control by solid-core photonic bandgap fiber.
    Isomäki A; Okhotnikov OG
    Opt Express; 2006 May; 14(10):4368-73. PubMed ID: 19516589
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tunable Fabry-Perot filter using hollow-core photonic bandgap fiber and micro-fiber for a narrow-linewidth laser.
    Wang X; Zhu T; Chen L; Bao X
    Opt Express; 2011 May; 19(10):9617-25. PubMed ID: 21643220
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Similariton fiber laser with a hollow-core photonic bandgap fiber for dispersion control.
    Ruehl A; Prochnow O; Engelbrecht M; Wandt D; Kracht D
    Opt Lett; 2007 May; 32(9):1084-6. PubMed ID: 17410243
    [TBL] [Abstract][Full Text] [Related]  

  • 34. All-dielectric integration of dielectric resonator antenna and photonic crystal waveguide.
    Withayachumnankul W; Yamada R; Fumeaux C; Fujita M; Nagatsuma T
    Opt Express; 2017 Jun; 25(13):14706-14714. PubMed ID: 28789054
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Gain guiding in large-core Bragg fibers.
    Ao X; Her TH; Casperson LW
    Opt Express; 2009 Dec; 17(25):22666-72. PubMed ID: 20052192
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effect of interfacial roughness on the normal incidence bandgap of one-dimensional photonic crystals.
    Maskaly K; Carter W; Averitt R; Maxwell J
    Opt Express; 2005 Oct; 13(21):8380-9. PubMed ID: 19498868
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Highly dispersive mirror in Ta2O5/SiO2 for femtosecond lasers designed by inverse spectral theory.
    Dods SR; Zhang Z; Ogura M
    Appl Opt; 1999 Jul; 38(21):4711-9. PubMed ID: 18323959
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Unique loss characteristics in TE
    Kubota H; Kosake N; Miyoshi Y; Ohashi M
    Opt Lett; 2018 Jun; 43(11):2599-2602. PubMed ID: 29856439
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Self-collimated waveguide bends and partial bandgap reflection of photonic crystals with parallelogram lattice.
    Gao D; Zhou Z; Citrin DS
    J Opt Soc Am A Opt Image Sci Vis; 2008 Mar; 25(3):791-5. PubMed ID: 18311251
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dispersive pulse compression in hollow-core photonic bandgap fibers.
    Laegsgaard J; Roberts PJ
    Opt Express; 2008 Jun; 16(13):9628-44. PubMed ID: 18575531
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.