These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 18846172)

  • 41. Effect of background dielectric on TE-polarized photonic bandgap of metallodielectric photonic crystals using Dirichlet-to-Neumann map method.
    Sedghi A; Rezaei B
    Appl Opt; 2016 Nov; 55(33):9417-9421. PubMed ID: 27869843
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Experimental and numerical study of pulse dynamics in positive net-cavity dispersion modelocked Yb-doped fiber lasers.
    Ortaς B; Plötner M; Schreiber T; Limpert J; Tünnermann A
    Opt Express; 2007 Nov; 15(23):15595-602. PubMed ID: 19550847
    [TBL] [Abstract][Full Text] [Related]  

  • 43. High-index-core Bragg fibers: dispersion properties.
    Monsoriu J; Silvestre E; Ferrando A; Andrés P; Miret J
    Opt Express; 2003 Jun; 11(12):1400-5. PubMed ID: 19466011
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Improved air-silica photonic crystal with a triangular airhole arrangement for hollow-core photonic bandgap fiber design.
    Yan M; Shum P
    Opt Lett; 2005 Aug; 30(15):1920-2. PubMed ID: 16092219
    [TBL] [Abstract][Full Text] [Related]  

  • 45. In-fiber polarimeters based on hollow-core photonic bandgap fibers.
    Xuan H; Jin W; Zhang M; Ju J; Liao Y
    Opt Express; 2009 Jul; 17(15):13246-54. PubMed ID: 19654730
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Nonlinear interaction between two different photonic bandgaps of a hybrid photonic crystal fiber.
    Cerqueira S A; Cordeiro CM; Biancalana F; Roberts PJ; Hernandez-Figueroa HE; Cruz CH
    Opt Lett; 2008 Sep; 33(18):2080-2. PubMed ID: 18794937
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Diminished normal reflectivity of one-dimensional photonic crystals due to dielectric interfacial roughness.
    Maskaly KR; Maskaly GR; Carter WC; Maxwell JL
    Opt Lett; 2004 Dec; 29(23):2791-3. PubMed ID: 15605507
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Self-stabilization of a mode-locked femtosecond fiber laser using a photonic bandgap fiber.
    Liu X; Laegsgaard J; Turchinovich D
    Opt Lett; 2010 Apr; 35(7):913-5. PubMed ID: 20364167
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Measurement of higher order chromatic dispersion in a photonic bandgap fiber: comparative study of spectral interferometric methods.
    Grósz T; Kovács AP; Kiss M; Szipőcs R
    Appl Opt; 2014 Mar; 53(9):1929-37. PubMed ID: 24663472
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Fabrication and characterization of an all-solid 2D photonic bandgap fiber with a low-loss region (< 20 dB/km) around 1550 nm.
    Bouwmans G; Bigot L; Quiquempois Y; Lopez F; Provino L; Douay M
    Opt Express; 2005 Oct; 13(21):8452-9. PubMed ID: 19498875
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Four-wave mixing in Ar-filled hollow core bandgap photonic crystal fiber.
    Zhao X; Cheng J; Xiong Q; Hua L; Jiang G
    Appl Opt; 2018 Jul; 57(20):5623-5627. PubMed ID: 30118073
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Tunable gratings in a hollow-core photonic bandgap fiber based on acousto-optic interaction.
    Yeom DI; Park HC; Hwang IK; Kim BY
    Opt Express; 2009 Jun; 17(12):9933-9. PubMed ID: 19506643
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Measuring higher-order modes in a low-loss, hollow-core, photonic-bandgap fiber.
    Nicholson JW; Meng L; Fini JM; Windeler RS; DeSantolo A; Monberg E; DiMarcello F; Dulashko Y; Hassan M; Ortiz R
    Opt Express; 2012 Aug; 20(18):20494-505. PubMed ID: 23037097
    [TBL] [Abstract][Full Text] [Related]  

  • 54. High power tunable femtosecond soliton source using hollow-core photonic bandgap fiber, and its use for frequency doubling.
    Gèrôme F; Dupriez P; Clowes J; Knight JC; Wadsworth WJ
    Opt Express; 2008 Feb; 16(4):2381-6. PubMed ID: 18542316
    [TBL] [Abstract][Full Text] [Related]  

  • 55. High energy nanosecond laser pulses delivered single-mode through hollow-core PBG fibers.
    Shephard J; Jones J; Hand D; Bouwmans G; Knight J; Russell P; Mangan B
    Opt Express; 2004 Feb; 12(4):717-23. PubMed ID: 19474876
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nonlinear optics in hollow-core photonic bandgap fibers.
    Bhagwat AR; Gaeta AL
    Opt Express; 2008 Mar; 16(7):5035-47. PubMed ID: 18542604
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Demonstration of amplified data transmission at 2 µm in a low-loss wide bandwidth hollow core photonic bandgap fiber.
    Petrovich MN; Poletti F; Wooler JP; Heidt AM; Baddela NK; Li Z; Gray DR; Slavík R; Parmigiani F; Wheeler NV; Hayes JR; Numkam E; Grűner-Nielsen L; Pálsdóttir B; Phelan R; Kelly B; O'Carroll J; Becker M; MacSuibhne N; Zhao J; Gunning FC; Ellis AD; Petropoulos P; Alam SU; Richardson DJ
    Opt Express; 2013 Nov; 21(23):28559-69. PubMed ID: 24514368
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Frequency translation via four-wave mixing Bragg scattering in Rb filled photonic bandgap fibers.
    Donvalkar PS; Venkataraman V; Clemmen S; Saha K; Gaeta AL
    Opt Lett; 2014 Mar; 39(6):1557-60. PubMed ID: 24690837
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission.
    Temelkuran B; Hart SD; Benoit G; Joannopoulos JD; Fink Y
    Nature; 2002 Dec; 420(6916):650-3. PubMed ID: 12478288
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Study on Nonlinear Spectral Properties of Photonic Crystal Fiber in Theory and Experiment].
    Zhao XT; Wang ST; Liu XX; Han Y; Zhao YY; Li SG; Hou LT
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Jun; 36(6):1650-5. PubMed ID: 30052365
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.