These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

468 related articles for article (PubMed ID: 18846223)

  • 21. Cellular functions of the dual-targeted catalytic subunit of telomerase, telomerase reverse transcriptase--potential role in senescence and aging.
    Ale-Agha N; Dyballa-Rukes N; Jakob S; Altschmied J; Haendeler J
    Exp Gerontol; 2014 Aug; 56():189-93. PubMed ID: 24583100
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genetic hypervariability in two distinct deuterostome telomerase reverse transcriptase genes and their early embryonic functions.
    Wells TB; Zhang G; Harley Z; Vaziri H
    Mol Biol Cell; 2009 Jan; 20(1):464-80. PubMed ID: 18946080
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular cloning and characterization of the zebrafish (Danio rerio) telomerase catalytic subunit (telomerase reverse transcriptase, TERT).
    Lau BW; Wong AO; Tsao GS; So KF; Yip HK
    J Mol Neurosci; 2008; 34(1):63-75. PubMed ID: 18157659
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cellular dissection of zebrafish hematopoiesis.
    Stachura DL; Traver D
    Methods Cell Biol; 2016; 133():11-53. PubMed ID: 27263407
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of Sry-related HMG box group F genes in zebrafish hematopoiesis.
    Chung MI; Ma AC; Fung TK; Leung AY
    Exp Hematol; 2011 Oct; 39(10):986-998.e5. PubMed ID: 21726513
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Knockdown of ribosomal protein S7 causes developmental abnormalities via p53 dependent and independent pathways in zebrafish.
    Duan J; Ba Q; Wang Z; Hao M; Li X; Hu P; Zhang D; Zhang R; Wang H
    Int J Biochem Cell Biol; 2011 Aug; 43(8):1218-27. PubMed ID: 21550419
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The caudal-related homeobox genes cdx1a and cdx4 act redundantly to regulate hox gene expression and the formation of putative hematopoietic stem cells during zebrafish embryogenesis.
    Davidson AJ; Zon LI
    Dev Biol; 2006 Apr; 292(2):506-18. PubMed ID: 16457800
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The 'definitive' (and 'primitive') guide to zebrafish hematopoiesis.
    Davidson AJ; Zon LI
    Oncogene; 2004 Sep; 23(43):7233-46. PubMed ID: 15378083
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Non-canonical functions of Telomerase Reverse Transcriptase - Impact on redox homeostasis.
    Rosen J; Jakobs P; Ale-Agha N; Altschmied J; Haendeler J
    Redox Biol; 2020 Jul; 34():101543. PubMed ID: 32502898
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regulation of telomere length and homeostasis by telomerase enzyme processivity.
    D'Souza Y; Lauzon C; Chu TW; Autexier C
    J Cell Sci; 2013 Jan; 126(Pt 2):676-87. PubMed ID: 23178942
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Thrombin receptor regulates hematopoiesis and endothelial-to-hematopoietic transition.
    Yue R; Li H; Liu H; Li Y; Wei B; Gao G; Jin Y; Liu T; Wei L; Du J; Pei G
    Dev Cell; 2012 May; 22(5):1092-100. PubMed ID: 22521721
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Non-canonical Functions of Telomerase Reverse Transcriptase: Emerging Roles and Biological Relevance.
    Thompson CAH; Wong JMY
    Curr Top Med Chem; 2020; 20(6):498-507. PubMed ID: 32003692
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The cloche and spadetail genes differentially affect hematopoiesis and vasculogenesis.
    Thompson MA; Ransom DG; Pratt SJ; MacLennan H; Kieran MW; Detrich HW; Vail B; Huber TL; Paw B; Brownlie AJ; Oates AC; Fritz A; Gates MA; Amores A; Bahary N; Talbot WS; Her H; Beier DR; Postlethwait JH; Zon LI
    Dev Biol; 1998 May; 197(2):248-69. PubMed ID: 9630750
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The structure and function of telomerase reverse transcriptase.
    Autexier C; Lue NF
    Annu Rev Biochem; 2006; 75():493-517. PubMed ID: 16756500
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tissue formation and tissue engineering through host cell recruitment or a potential injectable cell-based biocomposite with replicative potential: Molecular mechanisms controlling cellular senescence and the involvement of controlled transient telomerase activation therapies.
    Babizhayev MA; Yegorov YE
    J Biomed Mater Res A; 2015 Dec; 103(12):3993-4023. PubMed ID: 26034007
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Telomerase redux: ready for prime time?
    Larrick JW; Mendelsohn AR
    Rejuvenation Res; 2015 Apr; 18(2):185-7. PubMed ID: 25790341
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Telomerase inhibition and telomere targeting in hematopoietic cancer cell lines with small non-nucleosidic synthetic compounds (BIBR1532).
    El Daly H; Martens UM
    Methods Mol Biol; 2007; 405():47-60. PubMed ID: 18369817
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ontogeny of hematopoiesis: examining the emergence of hematopoietic cells in the vertebrate embryo.
    Galloway JL; Zon LI
    Curr Top Dev Biol; 2003; 53():139-58. PubMed ID: 12510667
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hematopoietic stem cell fate is established by the Notch-Runx pathway.
    Burns CE; Traver D; Mayhall E; Shepard JL; Zon LI
    Genes Dev; 2005 Oct; 19(19):2331-42. PubMed ID: 16166372
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Japanese medaka: a new vertebrate model for studying telomere and telomerase biology.
    Au DW; Mok HO; Elmore LW; Holt SE
    Comp Biochem Physiol C Toxicol Pharmacol; 2009 Mar; 149(2):161-7. PubMed ID: 18790082
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.