BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 18846243)

  • 21. Chemical Interface Damping Depends on Electrons Reaching the Surface.
    Foerster B; Joplin A; Kaefer K; Celiksoy S; Link S; Sönnichsen C
    ACS Nano; 2017 Mar; 11(3):2886-2893. PubMed ID: 28301133
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Resonant Rayleigh light scattering of single Au nanoparticles with different sizes and shapes.
    Truong PL; Ma X; Sim SJ
    Nanoscale; 2014 Feb; 6(4):2307-15. PubMed ID: 24413584
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Investigation of electron transfer between single plasmon and graphene by dark field spectroscopy.
    Du Q; Dou Z; Zhang W; Krüger K; Zhao S; Yue Z; Liu G
    Nanotechnology; 2021 Feb; 32(8):085707. PubMed ID: 33203812
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Gold nanoframes: very high surface plasmon fields and excellent near-infrared sensors.
    Mahmoud MA; El-Sayed MA
    J Am Chem Soc; 2010 Sep; 132(36):12704-10. PubMed ID: 20722373
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nanoscale plasmon-exciton interaction: the role of radiation damping and mode-volume in determining coupling strength.
    Kumar M; Dey J; Verma MS; Chandra M
    Nanoscale; 2020 Jun; 12(21):11612-11618. PubMed ID: 32441712
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Gold, platinum, and aluminum nanodisk plasmons: material independence, subradiance, and damping mechanisms.
    Zorić I; Zäch M; Kasemo B; Langhammer C
    ACS Nano; 2011 Apr; 5(4):2535-46. PubMed ID: 21438568
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multivariate Imaging for Fast Evaluation of In Situ Dark Field Microscopy Hyperspectral Data.
    Diehn S; Schlaad H; Kneipp J
    Molecules; 2022 Aug; 27(16):. PubMed ID: 36014387
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Decay times of surface plasmon excitation in metal nanoparticles by persistent spectral hole burning.
    Stietz F; Bosbach J; Wenzel T; Vartanyan T; Goldmann A; Trager F
    Phys Rev Lett; 2000 Jun; 84(24):5644-7. PubMed ID: 10991015
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Revisiting the plasmon radiation damping of gold nanorods.
    Yang Y; Xie H; You J; Ye W
    Phys Chem Chem Phys; 2022 Feb; 24(7):4131-4135. PubMed ID: 35113102
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Can the light scattering depolarization ratio of small particles be greater than 1/3?
    Khlebtsov NG; Melnikov AG; Bogatyrev VA; Dykman LA; Alekseeva AV; Trachuk LA; Khlebtsov BN
    J Phys Chem B; 2005 Jul; 109(28):13578-84. PubMed ID: 16852700
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Metallic Nanostructures as Localized Plasmon Resonance Enhanced Scattering Probes for Multiplex Dark Field Targeted Imaging of Cancer Cells.
    Hu R; Yong KT; Roy I; Ding H; He S; Prasad PN
    J Phys Chem C Nanomater Interfaces; 2009; 113(7):2676-2684. PubMed ID: 20046993
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tuning Chemical Interface Damping: Interfacial Electronic Effects of Adsorbate Molecules and Sharp Tips of Single Gold Bipyramids.
    Lee SY; Tsalu PV; Kim GW; Seo MJ; Hong JW; Ha JW
    Nano Lett; 2019 Apr; 19(4):2568-2574. PubMed ID: 30856334
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Screening sensitive nanosensors via the investigation of shape-dependent localized surface plasmon resonance of single Ag nanoparticles.
    Liu Y; Huang CZ
    Nanoscale; 2013 Aug; 5(16):7458-66. PubMed ID: 23831964
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Plasmon-modulated photoluminescence of individual gold nanostructures.
    Hu H; Duan H; Yang JK; Shen ZX
    ACS Nano; 2012 Nov; 6(11):10147-55. PubMed ID: 23072661
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Spectroscopic signatures of plasmon-induced charge transfer in gold nanorods.
    Lee SA; Ostovar B; Landes CF; Link S
    J Chem Phys; 2022 Feb; 156(6):064702. PubMed ID: 35168347
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Intensity-Based Single Particle Plasmon Sensing.
    Celiksoy S; Ye W; Wandner K; Kaefer K; Sönnichsen C
    Nano Lett; 2021 Mar; 21(5):2053-2058. PubMed ID: 33617258
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Correlating the structure and localized surface plasmon resonance of single silver right bipyramids.
    Ringe E; Zhang J; Langille MR; Mirkin CA; Marks LD; Van Duyne RP
    Nanotechnology; 2012 Nov; 23(44):444005. PubMed ID: 23080080
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment.
    Miller MM; Lazarides AA
    J Phys Chem B; 2005 Nov; 109(46):21556-65. PubMed ID: 16853799
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of the capping material on pyridine-induced chemical interface damping in single gold nanorods.
    Moon SW; Ha JW
    Analyst; 2019 Apr; 144(8):2679-2683. PubMed ID: 30855047
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.