BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

359 related articles for article (PubMed ID: 18846279)

  • 1. Cyanobacteriochromes: a new superfamily of tetrapyrrole-binding photoreceptors in cyanobacteria.
    Ikeuchi M; Ishizuka T
    Photochem Photobiol Sci; 2008 Oct; 7(10):1159-67. PubMed ID: 18846279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structures of cyanobacteriochromes from phototaxis regulators AnPixJ and TePixJ reveal general and specific photoconversion mechanism.
    Narikawa R; Ishizuka T; Muraki N; Shiba T; Kurisu G; Ikeuchi M
    Proc Natl Acad Sci U S A; 2013 Jan; 110(3):918-23. PubMed ID: 23256156
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cyanobacteriochrome TePixJ of Thermosynechococcus elongatus harbors phycoviolobilin as a chromophore.
    Ishizuka T; Narikawa R; Kohchi T; Katayama M; Ikeuchi M
    Plant Cell Physiol; 2007 Sep; 48(9):1385-90. PubMed ID: 17715149
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of cyanobacteriochrome TePixJ from a thermophilic cyanobacterium Thermosynechococcus elongatus strain BP-1.
    Ishizuka T; Shimada T; Okajima K; Yoshihara S; Ochiai Y; Katayama M; Ikeuchi M
    Plant Cell Physiol; 2006 Sep; 47(9):1251-61. PubMed ID: 16887842
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyanobacteriochromes: photoreceptors covering the entire UV-to-visible spectrum.
    Fushimi K; Narikawa R
    Curr Opin Struct Biol; 2019 Aug; 57():39-46. PubMed ID: 30831380
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new type of dual-Cys cyanobacteriochrome GAF domain found in cyanobacterium Acaryochloris marina, which has an unusual red/blue reversible photoconversion cycle.
    Narikawa R; Enomoto G; Ni-Ni-Win ; Fushimi K; Ikeuchi M
    Biochemistry; 2014 Aug; 53(31):5051-9. PubMed ID: 25029277
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for an early green/red photocycle that precedes the diversification of GAF domain photoreceptor cyanobacteriochromes.
    Priyadarshini N; Steube N; Wiens D; Narikawa R; Wilde A; Hochberg GKA; Enomoto G
    Photochem Photobiol Sci; 2023 Jun; 22(6):1415-1427. PubMed ID: 36781703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Color Tuning in Red/Green Cyanobacteriochrome AnPixJ: Photoisomerization at C15 Causes an Excited-State Destabilization.
    Song C; Narikawa R; Ikeuchi M; Gärtner W; Matysik J
    J Phys Chem B; 2015 Jul; 119(30):9688-95. PubMed ID: 26115331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cyanobacteriochromes from Gloeobacterales Provide New Insight into the Diversification of Cyanobacterial Photoreceptors.
    Rockwell NC; Lagarias JC
    J Mol Biol; 2024 Mar; 436(5):168313. PubMed ID: 37839679
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cyanobacteriochrome Photoreceptors Lacking the Canonical Cys Residue.
    Fushimi K; Rockwell NC; Enomoto G; Ni-Ni-Win ; Martin SS; Gan F; Bryant DA; Ikeuchi M; Lagarias JC; Narikawa R
    Biochemistry; 2016 Dec; 55(50):6981-6995. PubMed ID: 27935696
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cyanobacterial phytochrome-like PixJ1 holoprotein shows novel reversible photoconversion between blue- and green-absorbing forms.
    Yoshihara S; Katayama M; Geng X; Ikeuchi M
    Plant Cell Physiol; 2004 Dec; 45(12):1729-37. PubMed ID: 15653792
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Femtosecond photodynamics of the red/green cyanobacteriochrome NpR6012g4 from Nostoc punctiforme. 1. Forward dynamics.
    Kim PW; Freer LH; Rockwell NC; Martin SS; Lagarias JC; Larsen DS
    Biochemistry; 2012 Jan; 51(2):608-18. PubMed ID: 22148715
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel cyanobacteriochrome photoreceptor with the second Cys residue showing atypical orange/blue reversible photoconversion.
    Hoshino H; Narikawa R
    Photochem Photobiol Sci; 2023 Feb; 22(2):251-261. PubMed ID: 36156209
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distinctive Properties of Dark Reversion Kinetics between Two Red/Green-Type Cyanobacteriochromes and their Application in the Photoregulation of cAMP Synthesis.
    Fushimi K; Enomoto G; Ikeuchi M; Narikawa R
    Photochem Photobiol; 2017 May; 93(3):681-691. PubMed ID: 28500699
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution of cyanobacterial and plant phytochromes.
    Lamparter T
    FEBS Lett; 2004 Aug; 573(1-3):1-5. PubMed ID: 15327965
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A photo-labile thioether linkage to phycoviolobilin provides the foundation for the blue/green photocycles in DXCF-cyanobacteriochromes.
    Burgie ES; Walker JM; Phillips GN; Vierstra RD
    Structure; 2013 Jan; 21(1):88-97. PubMed ID: 23219880
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystallization and preliminary X-ray studies of the chromophore-binding domain of cyanobacteriochrome AnPixJ from Anabaena sp. PCC 7120.
    Narikawa R; Muraki N; Shiba T; Ikeuchi M; Kurisu G
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2009 Feb; 65(Pt 2):159-62. PubMed ID: 19194010
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unusual ring D fixation by three crucial residues promotes phycoviolobilin formation in the DXCF-type cyanobacteriochrome without the second Cys.
    Fushimi K; Narikawa R
    Biochem J; 2021 Mar; 478(5):1043-1059. PubMed ID: 33559683
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phytochromes and Cyanobacteriochromes: Photoreceptor Molecules Incorporating a Linear Tetrapyrrole Chromophore.
    Fushimi K; Narikawa R
    Adv Exp Med Biol; 2021; 1293():167-187. PubMed ID: 33398813
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Primary photodynamics of the green/red-absorbing photoswitching regulator of the chromatic adaptation E domain from Fremyella diplosiphon.
    Gottlieb SM; Kim PW; Rockwell NC; Hirose Y; Ikeuchi M; Lagarias JC; Larsen DS
    Biochemistry; 2013 Nov; 52(46):8198-208. PubMed ID: 24147541
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.