These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 18846396)
21. Geobacter sp. SD-1 with enhanced electrochemical activity in high-salt concentration solutions. Sun D; Call D; Wang A; Cheng S; Logan BE Environ Microbiol Rep; 2014 Dec; 6(6):723-9. PubMed ID: 25756125 [TBL] [Abstract][Full Text] [Related]
22. A novel Geobacteraceae-specific outer membrane protein J (OmpJ) is essential for electron transport to Fe(III) and Mn(IV) oxides in Geobacter sulfurreducens. Afkar E; Reguera G; Schiffer M; Lovley DR BMC Microbiol; 2005 Jul; 5():41. PubMed ID: 16000176 [TBL] [Abstract][Full Text] [Related]
23. Lipid composition and chemotaxonomy of Pseudomonas putrefaciens (Alteromonas putrefaciens). Wilkinson SG; Caudwell PF J Gen Microbiol; 1980 Jun; 118(2):329-41. PubMed ID: 7441198 [TBL] [Abstract][Full Text] [Related]
24. Decolorization of azo dyes by Geobacter metallireducens. Liu G; Zhou J; Chen C; Wang J; Jin R; Lv H Appl Microbiol Biotechnol; 2013 Sep; 97(17):7935-42. PubMed ID: 23132348 [TBL] [Abstract][Full Text] [Related]
25. Genomic and microarray analysis of aromatics degradation in Geobacter metallireducens and comparison to a Geobacter isolate from a contaminated field site. Butler JE; He Q; Nevin KP; He Z; Zhou J; Lovley DR BMC Genomics; 2007 Jun; 8():180. PubMed ID: 17578578 [TBL] [Abstract][Full Text] [Related]
26. Characterization of metabolism in the Fe(III)-reducing organism Geobacter sulfurreducens by constraint-based modeling. Mahadevan R; Bond DR; Butler JE; Esteve-Nuñez A; Coppi MV; Palsson BO; Schilling CH; Lovley DR Appl Environ Microbiol; 2006 Feb; 72(2):1558-68. PubMed ID: 16461711 [TBL] [Abstract][Full Text] [Related]
27. Effects of humic substances and quinones at low concentrations on ferrihydrite reduction by Geobacter metallireducens. Wolf M; Kappler A; Jiang J; Meckenstock RU Environ Sci Technol; 2009 Aug; 43(15):5679-85. PubMed ID: 19731662 [TBL] [Abstract][Full Text] [Related]
28. Relationship between kinetics of growth and production of exo-electrons: Case study with Geobacter toluenoxydans. Szöllősi A; Narr L; Kovács AG; Styevkó G Acta Microbiol Immunol Hung; 2015 Sep; 62(3):307-16. PubMed ID: 26551573 [TBL] [Abstract][Full Text] [Related]
29. Geobacter sulfurreducens can grow with oxygen as a terminal electron acceptor. Lin WC; Coppi MV; Lovley DR Appl Environ Microbiol; 2004 Apr; 70(4):2525-8. PubMed ID: 15066854 [TBL] [Abstract][Full Text] [Related]
30. Physiology of Geobacter metallireducens under excess and limitation of electron donors. Part II. Mimicking environmental conditions during cultivation in retentostats. Marozava S; Röling WF; Seifert J; Küffner R; von Bergen M; Meckenstock RU Syst Appl Microbiol; 2014 Jun; 37(4):287-95. PubMed ID: 24736031 [TBL] [Abstract][Full Text] [Related]
31. Isoprenoid quinones and fatty acids of Zoogloea. Hiraishi A; Shin YK; Sugiyama J; Komagata K Antonie Van Leeuwenhoek; 1992 Apr; 61(3):231-6. PubMed ID: 1519918 [TBL] [Abstract][Full Text] [Related]
32. Changes in phosphorylation of adenosine phosphate and redox state of nicotinamide-adenine dinucleotide (phosphate) in Geobacter sulfurreducens in response to electron acceptor and anode potential variation. Rose ND; Regan JM Bioelectrochemistry; 2015 Dec; 106(Pt A):213-20. PubMed ID: 25857596 [TBL] [Abstract][Full Text] [Related]
33. Fluorescent properties of c-type cytochromes reveal their potential role as an extracytoplasmic electron sink in Geobacter sulfurreducens. Esteve-Núñez A; Sosnik J; Visconti P; Lovley DR Environ Microbiol; 2008 Feb; 10(2):497-505. PubMed ID: 18093163 [TBL] [Abstract][Full Text] [Related]
34. Aquibacillus salifodinae sp. nov., a novel bacterium isolated from a salt mine in Xinjiang province, China. Zhang WY; Hu J; Zhang XQ; Zhu XF; Wu M Antonie Van Leeuwenhoek; 2015 Feb; 107(2):367-74. PubMed ID: 25465850 [TBL] [Abstract][Full Text] [Related]
35. A severe reduction in the cytochrome C content of Geobacter sulfurreducens eliminates its capacity for extracellular electron transfer. Estevez-Canales M; Kuzume A; Borjas Z; Füeg M; Lovley D; Wandlowski T; Esteve-Núñez A Environ Microbiol Rep; 2015 Apr; 7(2):219-26. PubMed ID: 25348891 [TBL] [Abstract][Full Text] [Related]
36. The structure of the core region of the lipopolysaccharide from Geobacter sulfurreducens. Vinogradov E; Korenevsky A; Lovley DR; Beveridge TJ Carbohydr Res; 2004 Dec; 339(18):2901-4. PubMed ID: 15582618 [TBL] [Abstract][Full Text] [Related]
37. Isoprenoid quinone content and cellular fatty acid composition of Campylobacter species. Moss CW; Kai A; Lambert MA; Patton C J Clin Microbiol; 1984 Jun; 19(6):772-6. PubMed ID: 6470096 [TBL] [Abstract][Full Text] [Related]
38. Physiology of Geobacter metallireducens under excess and limitation of electron donors. Part I. Batch cultivation with excess of carbon sources. Marozava S; Röling WF; Seifert J; Küffner R; von Bergen M; Meckenstock RU Syst Appl Microbiol; 2014 Jun; 37(4):277-86. PubMed ID: 24731775 [TBL] [Abstract][Full Text] [Related]
40. Syntrophic growth with direct interspecies electron transfer as the primary mechanism for energy exchange. Shrestha PM; Rotaru AE; Aklujkar M; Liu F; Shrestha M; Summers ZM; Malvankar N; Flores DC; Lovley DR Environ Microbiol Rep; 2013 Dec; 5(6):904-10. PubMed ID: 24249299 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]