BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 18846398)

  • 1. Genome shuffling to improve thermotolerance, ethanol tolerance and ethanol productivity of Saccharomyces cerevisiae.
    Shi DJ; Wang CL; Wang KM
    J Ind Microbiol Biotechnol; 2009 Jan; 36(1):139-47. PubMed ID: 18846398
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved production of ethanol by novel genome shuffling in Saccharomyces cerevisiae.
    Hou L
    Appl Biochem Biotechnol; 2010 Feb; 160(4):1084-93. PubMed ID: 19214789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved ethanol productivity and ethanol tolerance through genome shuffling of Saccharomyces cerevisiae and Pichia stipitis.
    Jetti KD; Gns RR; Garlapati D; Nammi SK
    Int Microbiol; 2019 Jun; 22(2):247-254. PubMed ID: 30810988
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced thermotolerance and ethanol tolerance in Saccharomyces cerevisiae mutated by high-energy pulse electron beam and protoplast fusion.
    Zhang M; Xiao Y; Zhu R; Zhang Q; Wang SL
    Bioprocess Biosyst Eng; 2012 Nov; 35(9):1455-65. PubMed ID: 22488242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome shuffling enhanced L-lactic acid production by improving glucose tolerance of Lactobacillus rhamnosus.
    Yu L; Pei X; Lei T; Wang Y; Feng Y
    J Biotechnol; 2008 Mar; 134(1-2):154-9. PubMed ID: 18289712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome shuffling of Saccharomyces cerevisiae for enhanced glutathione yield and relative gene expression analysis using fluorescent quantitation reverse transcription polymerase chain reaction.
    Yin H; Ma Y; Deng Y; Xu Z; Liu J; Zhao J; Dong J; Yu J; Chang Z
    J Microbiol Methods; 2016 Aug; 127():188-192. PubMed ID: 27302037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strain improvement of the pentose-fermenting yeast Pichia stipitis by genome shuffling.
    Bajwa PK; Pinel D; Martin VJ; Trevors JT; Lee H
    J Microbiol Methods; 2010 May; 81(2):179-86. PubMed ID: 20298725
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome shuffling enhanced ε-poly-L-lysine production by improving glucose tolerance of Streptomyces graminearus.
    Li S; Li F; Chen XS; Wang L; Xu J; Tang L; Mao ZG
    Appl Biochem Biotechnol; 2012 Jan; 166(2):414-23. PubMed ID: 22083395
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel strategy to construct yeast Saccharomyces cerevisiae strains for very high gravity fermentation.
    Tao X; Zheng D; Liu T; Wang P; Zhao W; Zhu M; Jiang X; Zhao Y; Wu X
    PLoS One; 2012; 7(2):e31235. PubMed ID: 22363590
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Drug resistance marker-aided genome shuffling to improve acetic acid tolerance in Saccharomyces cerevisiae.
    Zheng DQ; Wu XC; Wang PM; Chi XQ; Tao XL; Li P; Jiang XH; Zhao YH
    J Ind Microbiol Biotechnol; 2011 Mar; 38(3):415-22. PubMed ID: 20652356
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The combination of glycerol metabolic engineering and drug resistance marker-aided genome shuffling to improve very-high-gravity fermentation performances of industrial Saccharomyces cerevisiae.
    Wang PM; Zheng DQ; Liu TZ; Tao XL; Feng MG; Min H; Jiang XH; Wu XC
    Bioresour Technol; 2012 Mar; 108():203-10. PubMed ID: 22269055
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel methods of genome shuffling in Saccharomyces cerevisiae.
    Hou L
    Biotechnol Lett; 2009 May; 31(5):671-7. PubMed ID: 19153667
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome shuffling of Aspergillus glaucus HGZ-2 for enhanced cellulase production.
    Zhao Y; Jiang C; Yu H; Fang F; Yang J
    Appl Biochem Biotechnol; 2014 Oct; 174(4):1246-1259. PubMed ID: 25099375
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of whole cell directed evolution approaches in breeding of industrial strain of Saccharomyces cerevisiae.
    Hou LH; Meng M; Guo L; He JY
    Biotechnol Lett; 2015 Jul; 37(7):1393-8. PubMed ID: 25773199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new approach for breeding low-temperature-resistant Volvariella volvacea strains: Genome shuffling in edible fungi.
    Zhu Z; Wu X; Lv B; Wu G; Wang J; Jiang W; Li P; He J; Chen J; Chen M; Bao D; Zhang J; Tan Q; Tang X
    Biotechnol Appl Biochem; 2016 Sep; 63(5):605-615. PubMed ID: 26234394
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A genome shuffling-generated Saccharomyces cerevisiae isolate that ferments xylose and glucose to produce high levels of ethanol.
    Jingping G; Hongbing S; Gang S; Hongzhi L; Wenxiang P
    J Ind Microbiol Biotechnol; 2012 May; 39(5):777-87. PubMed ID: 22270888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome shuffling in the ethanologenic yeast Candida krusei to improve acetic acid tolerance.
    Wei P; Li Z; He P; Lin Y; Jiang N
    Biotechnol Appl Biochem; 2008 Feb; 49(Pt 2):113-20. PubMed ID: 17630953
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large-scale robot-assisted genome shuffling yields industrial Saccharomyces cerevisiae yeasts with increased ethanol tolerance.
    Snoek T; Picca Nicolino M; Van den Bremt S; Mertens S; Saels V; Verplaetse A; Steensels J; Verstrepen KJ
    Biotechnol Biofuels; 2015; 8():32. PubMed ID: 25759747
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome shuffling of Penicillium citrinum for enhanced production of nuclease P1.
    Wang C; Wu G; Li Y; Huang Y; Zhang F; Liang X
    Appl Biochem Biotechnol; 2013 Jul; 170(6):1533-45. PubMed ID: 23700147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Screening and construction of Saccharomyces cerevisiae strains with improved multi-tolerance and bioethanol fermentation performance.
    Zheng DQ; Wu XC; Tao XL; Wang PM; Li P; Chi XQ; Li YD; Yan QF; Zhao YH
    Bioresour Technol; 2011 Feb; 102(3):3020-7. PubMed ID: 20980141
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.