These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 18846460)

  • 41. Advanced modeling strategy for the analysis of heart valve leaflet tissue mechanics using high-order finite element method.
    Mohammadi H; Bahramian F; Wan W
    Med Eng Phys; 2009 Nov; 31(9):1110-7. PubMed ID: 19773193
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Implant biomechanics in grafted sinus: a finite element analysis.
    Fanuscu MI; Vu HV; Poncelet B
    J Oral Implantol; 2004; 30(2):59-68. PubMed ID: 15119454
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Noninvasive determination of ligament strain with deformable image registration.
    Phatak NS; Sun Q; Kim SE; Parker DL; Sanders RK; Veress AI; Ellis BJ; Weiss JA
    Ann Biomed Eng; 2007 Jul; 35(7):1175-87. PubMed ID: 17394084
    [TBL] [Abstract][Full Text] [Related]  

  • 44. An inhomogeneous and anisotropic constitutive model of human dentin.
    Huo B
    J Biomech; 2005 Mar; 38(3):587-94. PubMed ID: 15652558
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mechanical loading effects on isthmic spondylolytic lumbar segment: finite element modelling using a personalised geometry.
    El-Rich M; Villemure I; Labelle H; Aubin CE
    Comput Methods Biomech Biomed Engin; 2009 Feb; 12(1):13-23. PubMed ID: 18821096
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Influence of tissue conductivity anisotropy on EEG/MEG field and return current computation in a realistic head model: a simulation and visualization study using high-resolution finite element modeling.
    Wolters CH; Anwander A; Tricoche X; Weinstein D; Koch MA; MacLeod RS
    Neuroimage; 2006 Apr; 30(3):813-26. PubMed ID: 16364662
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Search for critical loading condition of the spine--a meta analysis of a nonlinear viscoelastic finite element model.
    Wang JL; Shirazi-Adl A; Parnianpour M
    Comput Methods Biomech Biomed Engin; 2005 Oct; 8(5):323-30. PubMed ID: 16298854
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Non-linear material models for tracheal smooth muscle tissue.
    Sarma PA; Pidaparti RM; Moulik PN; Meiss RA
    Biomed Mater Eng; 2003; 13(3):235-45. PubMed ID: 12883173
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A homogenization model of the annulus fibrosus.
    Yin L; Elliott DM
    J Biomech; 2005 Aug; 38(8):1674-84. PubMed ID: 15958225
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Micromechanical modelling of cortical bone.
    Mullins LP; McGarry JP; Bruzzi MS; McHugh PE
    Comput Methods Biomech Biomed Engin; 2007 Jun; 10(3):159-69. PubMed ID: 17558645
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The global impact of sutures assessed in a finite element model of a macaque cranium.
    Wang Q; Smith AL; Strait DS; Wright BW; Richmond BG; Grosse IR; Byron CD; Zapata U
    Anat Rec (Hoboken); 2010 Sep; 293(9):1477-91. PubMed ID: 20652940
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Tensile behavior of cortical bone: dependence of organic matrix material properties on bone mineral content.
    Kotha SP; Guzelsu N
    J Biomech; 2007; 40(1):36-45. PubMed ID: 16434048
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Deformation analysis of the periodontium considering the viscoelasticity of the periodontal ligament.
    Qian L; Todo M; Morita Y; Matsushita Y; Koyano K
    Dent Mater; 2009 Oct; 25(10):1285-92. PubMed ID: 19560807
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Modelling and convergence in arterial wall simulations using a parallel FETI solution strategy.
    Brands D; Klawonn A; Rheinbach O; Schröder J
    Comput Methods Biomech Biomed Engin; 2008 Oct; 11(5):569-83. PubMed ID: 18608341
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Towards a reliable characterisation of the mechanical behaviour of brain tissue: The effects of post-mortem time and sample preparation.
    Garo A; Hrapko M; van Dommelen JA; Peters GW
    Biorheology; 2007; 44(1):51-8. PubMed ID: 17502689
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Deterministic material-based averaging theory model of collagen gel micromechanics.
    Chandran PL; Barocas VH
    J Biomech Eng; 2007 Apr; 129(2):137-47. PubMed ID: 17408318
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Titanium with aligned, elongated pores for orthopedic tissue engineering applications.
    Spoerke ED; Murray NG; Li H; Brinson LC; Dunand DC; Stupp SI
    J Biomed Mater Res A; 2008 Feb; 84(2):402-12. PubMed ID: 17618479
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Micromechanics of brain white matter tissue: A fiber-reinforced hyperelastic model using embedded element technique.
    Yousefsani SA; Shamloo A; Farahmand F
    J Mech Behav Biomed Mater; 2018 Apr; 80():194-202. PubMed ID: 29428702
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A Three-Dimensional Statistical Volume Element for Histology Informed Micromechanical Modeling of Brain White Matter.
    Hoursan H; Farahmand F; Ahmadian MT
    Ann Biomed Eng; 2020 Apr; 48(4):1337-1353. PubMed ID: 31965358
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The effect of heel-pad thickness and loading protocol on measured heel-pad stiffness and a standardized protocol for inter-subject comparability.
    Spears IR; Miller-Young JE
    Clin Biomech (Bristol, Avon); 2006 Feb; 21(2):204-12. PubMed ID: 16289518
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.