BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 18846597)

  • 21. Efficient catalytic interconversion between NADH and NAD+ accompanied by generation and consumption of hydrogen with a water-soluble iridium complex at ambient pressure and temperature.
    Maenaka Y; Suenobu T; Fukuzumi S
    J Am Chem Soc; 2012 Jan; 134(1):367-74. PubMed ID: 22122737
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Half-sandwich rhodium(III) transfer hydrogenation catalysts: Reduction of NAD(+) and pyruvate, and antiproliferative activity.
    Soldevila-Barreda JJ; Habtemariam A; Romero-Canelón I; Sadler PJ
    J Inorg Biochem; 2015 Dec; 153():322-333. PubMed ID: 26601938
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electrochemical Generation and Spectroscopic Characterization of the Key Rhodium(III) Hydride Intermediates of Rhodium Poly(bipyridyl) H
    Castillo CE; Stoll T; Sandroni M; Gueret R; Fortage J; Kayanuma M; Daniel C; Odobel F; Deronzier A; Collomb MN
    Inorg Chem; 2018 Sep; 57(17):11225-11239. PubMed ID: 30129361
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cp*Co(III) catalysts with proton-responsive ligands for carbon dioxide hydrogenation in aqueous media.
    Badiei YM; Wang WH; Hull JF; Szalda DJ; Muckerman JT; Himeda Y; Fujita E
    Inorg Chem; 2013 Nov; 52(21):12576-86. PubMed ID: 24131038
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A computational mechanistic investigation of hydrogen production in water using the [Rh(III)(dmbpy)2Cl2](+)/[Ru(II)(bpy)3](2+)/ascorbic acid photocatalytic system.
    Kayanuma M; Stoll T; Daniel C; Odobel F; Fortage J; Deronzier A; Collomb MN
    Phys Chem Chem Phys; 2015 Apr; 17(16):10497-509. PubMed ID: 25804803
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Origins of the selectivity for borylation of primary over secondary C-H bonds catalyzed by Cp*-rhodium complexes.
    Wei CS; Jiménez-Hoyos CA; Videa MF; Hartwig JF; Hall MB
    J Am Chem Soc; 2010 Mar; 132(9):3078-91. PubMed ID: 20121104
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hydrogen-deuterium exchange reactions of aromatic compounds and heterocycles by NaBD4-activated rhodium, platinum and palladium catalysts.
    Derdau V; Atzrodt J; Zimmermann J; Kroll C; Brückner F
    Chemistry; 2009 Oct; 15(40):10397-404. PubMed ID: 19681076
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanism and Mitigation of the Decomposition of an Oxorhenium Complex-Based Heterogeneous Catalyst for Perchlorate Reduction in Water.
    Liu J; Chen X; Wang Y; Strathmann TJ; Werth CJ
    Environ Sci Technol; 2015 Nov; 49(21):12932-40. PubMed ID: 26422179
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rhodium-catalyzed, efficient deutero- and tritiosilylation of carbonyl compounds from hydrosilanes and deuterium or tritium.
    Rubio M; Campos J; Carmona E
    Org Lett; 2011 Oct; 13(19):5236-9. PubMed ID: 21875146
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ligand Substituents Govern the Efficiency and Mechanistic Path of Hydrogen Production with [Cp*Rh] Catalysts.
    Henke WC; Lionetti D; Moore WNG; Hopkins JA; Day VW; Blakemore JD
    ChemSusChem; 2017 Nov; 10(22):4589-4598. PubMed ID: 29024563
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Antitumor pentamethylcyclopentadienyl rhodium complexes of maltol and allomaltol: synthesis, solution speciation and bioactivity.
    Dömötör O; Aicher S; Schmidlehner M; Novak MS; Roller A; Jakupec MA; Kandioller W; Hartinger CG; Keppler BK; Enyedy ÉA
    J Inorg Biochem; 2014 May; 134():57-65. PubMed ID: 24556426
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Functionalized cyclopentadienyl rhodium(III) bipyridine complexes: synthesis, characterization, and catalytic application in hydrogenation of ketones.
    Wang WH; Suna Y; Himeda Y; Muckerman JT; Fujita E
    Dalton Trans; 2013 Jul; 42(26):9628-36. PubMed ID: 23677258
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Homogeneous catalytic reduction of dioxygen using transfer hydrogenation catalysts.
    Heiden ZM; Rauchfuss TB
    J Am Chem Soc; 2007 Nov; 129(46):14303-10. PubMed ID: 17958423
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Controlling Hydrogen Evolution during Photoreduction of CO
    Todorova TK; Huan TN; Wang X; Agarwala H; Fontecave M
    Inorg Chem; 2019 May; 58(10):6893-6903. PubMed ID: 31050296
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Proton-hydride tautomerism in hydrogen evolution catalysis.
    Quintana LM; Johnson SI; Corona SL; Villatoro W; Goddard WA; Takase MK; VanderVelde DG; Winkler JR; Gray HB; Blakemore JD
    Proc Natl Acad Sci U S A; 2016 Jun; 113(23):6409-14. PubMed ID: 27222576
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hydrogen storage and evolution catalysed by metal hydride complexes.
    Fukuzumi S; Suenobu T
    Dalton Trans; 2013 Jan; 42(1):18-28. PubMed ID: 23080061
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High turnover in a photocatalytic system for water reduction to produce hydrogen using a Ru,  Rh,  Ru photoinitiated electron collector.
    Arachchige SM; Shaw R; White TA; Shenoy V; Tsui HM; Brewer KJ
    ChemSusChem; 2011 Apr; 4(4):514-8. PubMed ID: 21438156
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Highly efficient dehydrogenation of formic acid in aqueous solution catalysed by an easily available water-soluble iridium(iii) dihydride.
    Papp G; Ölveti G; Horváth H; Kathó Á; Joó F
    Dalton Trans; 2016 Oct; 45(37):14516-9. PubMed ID: 27263467
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rhodium-catalyzed decarbonylation of aldoses.
    Monrad RN; Madsen R
    J Org Chem; 2007 Dec; 72(25):9782-5. PubMed ID: 17979290
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reactivity and equilibrium thermodynamic studies of rhodium tetrakis(3,5-disulfonatomesityl)porphyrin species with H2, CO, and olefins in water.
    Fu X; Li S; Wayland BB
    Inorg Chem; 2006 Nov; 45(24):9884-9. PubMed ID: 17112286
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.