These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 18847196)
61. The origin of a methicillin-resistant Staphylococcus aureus isolate at a neonatal ward in Sweden-possible horizontal transfer of a staphylococcal cassette chromosome mec between methicillin-resistant Staphylococcus haemolyticus and Staphylococcus aureus. Berglund C; Söderquist B Clin Microbiol Infect; 2008 Nov; 14(11):1048-56. PubMed ID: 19040477 [TBL] [Abstract][Full Text] [Related]
62. Disruption of oligomerization and dehydroalanine formation as mechanisms for ClpP protease inhibition. Gersch M; Kolb R; Alte F; Groll M; Sieber SA J Am Chem Soc; 2014 Jan; 136(4):1360-6. PubMed ID: 24106749 [TBL] [Abstract][Full Text] [Related]
63. Insights into structural network responsible for oligomerization and activity of bacterial virulence regulator caseinolytic protease P (ClpP) protein. Gersch M; List A; Groll M; Sieber SA J Biol Chem; 2012 Mar; 287(12):9484-94. PubMed ID: 22291011 [TBL] [Abstract][Full Text] [Related]
64. Global Inventory of ClpP- and ClpX-Regulated Proteins in Kirsch VC; Fetzer C; Sieber SA J Proteome Res; 2021 Jan; 20(1):867-879. PubMed ID: 33210542 [No Abstract] [Full Text] [Related]
65. Chemical genetic identification of peptidoglycan inhibitors potentiating carbapenem activity against methicillin-resistant Staphylococcus aureus. Huber J; Donald RG; Lee SH; Jarantow LW; Salvatore MJ; Meng X; Painter R; Onishi RH; Occi J; Dorso K; Young K; Park YW; Skwish S; Szymonifka MJ; Waddell TS; Miesel L; Phillips JW; Roemer T Chem Biol; 2009 Aug; 16(8):837-48. PubMed ID: 19716474 [TBL] [Abstract][Full Text] [Related]
66. Increased hydrophobic interactions of iclaprim with Staphylococcus aureus dihydrofolate reductase are responsible for the increase in affinity and antibacterial activity. Oefner C; Bandera M; Haldimann A; Laue H; Schulz H; Mukhija S; Parisi S; Weiss L; Lociuro S; Dale GE J Antimicrob Chemother; 2009 Apr; 63(4):687-98. PubMed ID: 19211577 [TBL] [Abstract][Full Text] [Related]
67. Inhibitory properties and X-ray crystallographic study of the binding of AR-101, AR-102 and iclaprim in ternary complexes with NADPH and dihydrofolate reductase from Staphylococcus aureus. Oefner C; Parisi S; Schulz H; Lociuro S; Dale GE Acta Crystallogr D Biol Crystallogr; 2009 Aug; 65(Pt 8):751-7. PubMed ID: 19622858 [TBL] [Abstract][Full Text] [Related]
68. Helicobacter pylori mutants defective in the clpP ATP-dependant protease and the chaperone clpA display reduced macrophage and murine survival. Loughlin MF; Arandhara V; Okolie C; Aldsworth TG; Jenks PJ Microb Pathog; 2009 Jan; 46(1):53-7. PubMed ID: 18992803 [TBL] [Abstract][Full Text] [Related]
69. Constitutive and inducible clindamycin resistance in Staphylococcus aureus and their association with meticillin-resistant S. aureus (MRSA): experience from a tertiary care hospital in Nepal. Mohapatra TM; Shrestha B; Pokhrel BM Int J Antimicrob Agents; 2009 Feb; 33(2):187-9. PubMed ID: 18945597 [No Abstract] [Full Text] [Related]
70. Ureadepsipeptides as ClpP Activators. Griffith EC; Zhao Y; Singh AP; Conlon BP; Tangallapally R; Shadrick WR; Liu J; Wallace MJ; Yang L; Elmore JM; Li Y; Zheng Z; Miller DJ; Cheramie MN; Lee RB; LaFleur MD; Lewis K; Lee RE ACS Infect Dis; 2019 Nov; 5(11):1915-1925. PubMed ID: 31588734 [TBL] [Abstract][Full Text] [Related]
71. Production, isolation and biological activity of nargenicin from Nocardia sp. CS682. Sohng JK; Yamaguchi T; Seong CN; Baik KS; Park SC; Lee HJ; Jang SY; Simkhada JR; Yoo JC Arch Pharm Res; 2008 Oct; 31(10):1339-45. PubMed ID: 18958426 [TBL] [Abstract][Full Text] [Related]
72. Understanding how leading bacterial pathogens subvert innate immunity to reveal novel therapeutic targets. Nizet V J Allergy Clin Immunol; 2007 Jul; 120(1):13-22. PubMed ID: 17606031 [TBL] [Abstract][Full Text] [Related]
73. Antibacterial effect of octylcyanoacrylate against methicillin-resistant Staphylococcus aureus isolates from patients with chronic suppurative otitis media. Jang CH; Park H; Choi CH; Cho YB; Park IY In Vivo; 2008; 22(6):763-5. PubMed ID: 19181004 [TBL] [Abstract][Full Text] [Related]
74. Evaluation of vancomycin and daptomycin against methicillin-resistant Staphylococcus aureus and heterogeneously vancomycin-intermediate S. aureus in an in vitro pharmacokinetic/pharmacodynamic model with simulated endocardial vegetations. Leonard SN; Rybak MJ J Antimicrob Chemother; 2009 Jan; 63(1):155-60. PubMed ID: 18984644 [TBL] [Abstract][Full Text] [Related]
75. ClpP Protease, a Promising Antimicrobial Target. Moreno-Cinos C; Goossens K; Salado IG; Van Der Veken P; De Winter H; Augustyns K Int J Mol Sci; 2019 May; 20(9):. PubMed ID: 31067645 [TBL] [Abstract][Full Text] [Related]
76. Targeting virulence: a new paradigm for antimicrobial therapy. Clatworthy AE; Pierson E; Hung DT Nat Chem Biol; 2007 Sep; 3(9):541-8. PubMed ID: 17710100 [TBL] [Abstract][Full Text] [Related]
77. Structural switching of Staphylococcus aureus Clp protease: a key to understanding protease dynamics. Zhang J; Ye F; Lan L; Jiang H; Luo C; Yang CG J Biol Chem; 2011 Oct; 286(43):37590-601. PubMed ID: 21900233 [TBL] [Abstract][Full Text] [Related]
78. Macrolactins O-R, glycosylated 24-membered lactones from Bacillus sp. AH159-1. Zheng CJ; Lee S; Lee CH; Kim WG J Nat Prod; 2007 Oct; 70(10):1632-5. PubMed ID: 17887720 [TBL] [Abstract][Full Text] [Related]
79. De novo design of caseinolytic protein proteases inhibitors based on pharmacophore and 2D molecular fingerprints. Wu G; Zhang Z; Chen H; Lin K Bioorg Med Chem Lett; 2015 Jun; 25(11):2345-52. PubMed ID: 25937012 [TBL] [Abstract][Full Text] [Related]
80. Targeting wall techoic acid biosynthesis: an in vivo based high-throughput screen for small molecule inhibitors. Chen W; Woodward R; Wang PG ACS Chem Biol; 2009 Nov; 4(11):893-4. PubMed ID: 19888733 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]