These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 18847219)
1. Direct metal transfer between periplasmic proteins identifies a bacterial copper chaperone. Bagai I; Rensing C; Blackburn NJ; McEvoy MM Biochemistry; 2008 Nov; 47(44):11408-14. PubMed ID: 18847219 [TBL] [Abstract][Full Text] [Related]
2. Mechanism of ATPase-mediated Cu+ export and delivery to periplasmic chaperones: the interaction of Escherichia coli CopA and CusF. Padilla-Benavides T; George Thompson AM; McEvoy MM; Argüello JM J Biol Chem; 2014 Jul; 289(30):20492-501. PubMed ID: 24917681 [TBL] [Abstract][Full Text] [Related]
3. Interactions between CusF and CusB identified by NMR spectroscopy and chemical cross-linking coupled to mass spectrometry. Mealman TD; Bagai I; Singh P; Goodlett DR; Rensing C; Zhou H; Wysocki VH; McEvoy MM Biochemistry; 2011 Apr; 50(13):2559-66. PubMed ID: 21323389 [TBL] [Abstract][Full Text] [Related]
4. Substrate-linked conformational change in the periplasmic component of a Cu(I)/Ag(I) efflux system. Bagai I; Liu W; Rensing C; Blackburn NJ; McEvoy MM J Biol Chem; 2007 Dec; 282(49):35695-702. PubMed ID: 17893146 [TBL] [Abstract][Full Text] [Related]
5. Insight into the cation-π interaction at the metal binding site of the copper metallochaperone CusF. Chakravorty DK; Wang B; Ucisik MN; Merz KM J Am Chem Soc; 2011 Dec; 133(48):19330-3. PubMed ID: 22029374 [TBL] [Abstract][Full Text] [Related]
6. EPR spectroscopy identifies Met and Lys residues that are essential for the interaction between the CusB N-terminal domain and metallochaperone CusF. Meir A; Natan A; Moskovitz Y; Ruthstein S Metallomics; 2015 Jul; 7(7):1163-72. PubMed ID: 25940871 [TBL] [Abstract][Full Text] [Related]
7. Tracking metal ions through a Cu/Ag efflux pump assigns the functional roles of the periplasmic proteins. Chacón KN; Mealman TD; McEvoy MM; Blackburn NJ Proc Natl Acad Sci U S A; 2014 Oct; 111(43):15373-8. PubMed ID: 25313055 [TBL] [Abstract][Full Text] [Related]
8. Molecular analysis of the copper-transporting efflux system CusCFBA of Escherichia coli. Franke S; Grass G; Rensing C; Nies DH J Bacteriol; 2003 Jul; 185(13):3804-12. PubMed ID: 12813074 [TBL] [Abstract][Full Text] [Related]
9. N-terminal region of CusB is sufficient for metal binding and metal transfer with the metallochaperone CusF. Mealman TD; Zhou M; Affandi T; Chacón KN; Aranguren ME; Blackburn NJ; Wysocki VH; McEvoy MM Biochemistry; 2012 Aug; 51(34):6767-75. PubMed ID: 22812620 [TBL] [Abstract][Full Text] [Related]
10. Tryptophan Cu(I)-pi interaction fine-tunes the metal binding properties of the bacterial metallochaperone CusF. Loftin IR; Blackburn NJ; McEvoy MM J Biol Inorg Chem; 2009 Aug; 14(6):905-12. PubMed ID: 19381697 [TBL] [Abstract][Full Text] [Related]
11. Models for the Metal Transfer Complex of the N-Terminal Region of CusB and CusF. Ucisik MN; Chakravorty DK; Merz KM Biochemistry; 2015 Jul; 54(27):4226-35. PubMed ID: 26079272 [TBL] [Abstract][Full Text] [Related]
12. Biophysical and physiological characterization of ZraP from Escherichia coli, the periplasmic accessory protein of the atypical ZraSR two-component system. Petit-Härtlein I; Rome K; de Rosny E; Molton F; Duboc C; Gueguen E; Rodrigue A; Covès J Biochem J; 2015 Dec; 472(2):205-16. PubMed ID: 26438879 [TBL] [Abstract][Full Text] [Related]
13. Metal export by CusCFBA, the periplasmic Cu(I)/Ag(I) transport system of Escherichia coli. Mealman TD; Blackburn NJ; McEvoy MM Curr Top Membr; 2012; 69():163-96. PubMed ID: 23046651 [TBL] [Abstract][Full Text] [Related]
14. Periplasmic domain of CusA in an Escherichia coli Cu+/Ag+ transporter has metal binding sites. Yun BY; Xu Y; Piao S; Kim N; Yoon JH; Cho HS; Lee K; Ha NC J Microbiol; 2010 Dec; 48(6):829-35. PubMed ID: 21221942 [TBL] [Abstract][Full Text] [Related]
15. Periplasmic metal-resistance protein CusF exhibits high affinity and specificity for both CuI and AgI. Kittleson JT; Loftin IR; Hausrath AC; Engelhardt KP; Rensing C; McEvoy MM Biochemistry; 2006 Sep; 45(37):11096-102. PubMed ID: 16964970 [TBL] [Abstract][Full Text] [Related]
16. Unusual Cu(I)/Ag(I) coordination of Escherichia coli CusF as revealed by atomic resolution crystallography and X-ray absorption spectroscopy. Loftin IR; Franke S; Blackburn NJ; McEvoy MM Protein Sci; 2007 Oct; 16(10):2287-93. PubMed ID: 17893365 [TBL] [Abstract][Full Text] [Related]
17. Kβ Valence to Core X-ray Emission Studies of Cu(I) Binding Proteins with Mixed Methionine - Histidine Coordination. Relevance to the Reactivity of the M- and H-sites of Peptidylglycine Monooxygenase. Martin-Diaconescu V; Chacón KN; Delgado-Jaime MU; Sokaras D; Weng TC; DeBeer S; Blackburn NJ Inorg Chem; 2016 Apr; 55(7):3431-9. PubMed ID: 26965786 [TBL] [Abstract][Full Text] [Related]
18. RcnB is a periplasmic protein essential for maintaining intracellular Ni and Co concentrations in Escherichia coli. Blériot C; Effantin G; Lagarde F; Mandrand-Berthelot MA; Rodrigue A J Bacteriol; 2011 Aug; 193(15):3785-93. PubMed ID: 21665978 [TBL] [Abstract][Full Text] [Related]
19. A critical role of the periplasm in copper homeostasis in Gram-negative bacteria. Ishihara JI; Mekubo T; Kusaka C; Kondo S; Oiko R; Igarashi K; Aiba H; Ishikawa S; Ogasawara N; Oshima T; Takahashi H Biosystems; 2023 Sep; 231():104980. PubMed ID: 37453610 [TBL] [Abstract][Full Text] [Related]
20. Metal Ion Capture Mechanism of a Copper Metallochaperone. Chakravorty DK; Li P; Tran TT; Bayse CA; Merz KM Biochemistry; 2016 Jan; 55(3):501-9. PubMed ID: 26690586 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]