BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 18847220)

  • 1. A putative Fe2+-bound persulfenate intermediate in cysteine dioxygenase.
    Simmons CR; Krishnamoorthy K; Granett SL; Schuller DJ; Dominy JE; Begley TP; Stipanuk MH; Karplus PA
    Biochemistry; 2008 Nov; 47(44):11390-2. PubMed ID: 18847220
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cysteine dioxygenase structures from pH4 to 9: consistent cys-persulfenate formation at intermediate pH and a Cys-bound enzyme at higher pH.
    Driggers CM; Cooley RB; Sankaran B; Hirschberger LL; Stipanuk MH; Karplus PA
    J Mol Biol; 2013 Sep; 425(17):3121-36. PubMed ID: 23747973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical study on the mechanism of the oxygen activation process in cysteine dioxygenase enzymes.
    Kumar D; Thiel W; de Visser SP
    J Am Chem Soc; 2011 Mar; 133(11):3869-82. PubMed ID: 21344861
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanistic implications of persulfenate and persulfide binding in the active site of cysteine dioxygenase.
    Souness RJ; Kleffmann T; Tchesnokov EP; Wilbanks SM; Jameson GB; Jameson GN
    Biochemistry; 2013 Oct; 52(43):7606-17. PubMed ID: 24084026
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Second-sphere interactions between the C93-Y157 cross-link and the substrate-bound Fe site influence the O₂ coupling efficiency in mouse cysteine dioxygenase.
    Li W; Blaesi EJ; Pecore MD; Crowell JK; Pierce BS
    Biochemistry; 2013 Dec; 52(51):9104-19. PubMed ID: 24279989
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing the Cys-Tyr Cofactor Biogenesis in Cysteine Dioxygenase by the Genetic Incorporation of Fluorotyrosine.
    Li J; Koto T; Davis I; Liu A
    Biochemistry; 2019 Apr; 58(17):2218-2227. PubMed ID: 30946568
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single turnover of substrate-bound ferric cysteine dioxygenase with superoxide anion: enzymatic reactivation, product formation, and a transient intermediate.
    Crawford JA; Li W; Pierce BS
    Biochemistry; 2011 Nov; 50(47):10241-53. PubMed ID: 21992268
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Why do cysteine dioxygenase enzymes contain a 3-His ligand motif rather than a 2His/1Asp motif like most nonheme dioxygenases?
    de Visser SP; Straganz GD
    J Phys Chem A; 2009 Mar; 113(9):1835-46. PubMed ID: 19199799
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shifting redox states of the iron center partitions CDO between crosslink formation or cysteine oxidation.
    Njeri CW; Ellis HR
    Arch Biochem Biophys; 2014 Sep; 558():61-9. PubMed ID: 24929188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the Dynamical Behavior of the Cysteine Dioxygenase-l-Cysteine Complex in the Presence of Free Dioxygen and l-Cysteine.
    Pietra F
    Chem Biodivers; 2017 Nov; 14(11):. PubMed ID: 28857465
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Structural and Functional Model for the Tris-Histidine Motif in Cysteine Dioxygenase.
    Anandababu K; Ramasubramanian R; Wadepohl H; Comba P; Johnee Britto N; Jaccob M; Mayilmurugan R
    Chemistry; 2019 Jul; 25(40):9540-9547. PubMed ID: 31090109
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure-Based Insights into the Role of the Cys-Tyr Crosslink and Inhibitor Recognition by Mammalian Cysteine Dioxygenase.
    Driggers CM; Kean KM; Hirschberger LL; Cooley RB; Stipanuk MH; Karplus PA
    J Mol Biol; 2016 Oct; 428(20):3999-4012. PubMed ID: 27477048
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and mechanism leading to formation of the cysteine sulfinate product complex of a biomimetic cysteine dioxygenase model.
    Sallmann M; Kumar S; Chernev P; Nehrkorn J; Schnegg A; Kumar D; Dau H; Limberg C; de Visser SP
    Chemistry; 2015 May; 21(20):7470-9. PubMed ID: 25823421
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectroscopic and Computational Investigation of the H155A Variant of Cysteine Dioxygenase: Geometric and Electronic Consequences of a Third-Sphere Amino Acid Substitution.
    Blaesi EJ; Fox BG; Brunold TC
    Biochemistry; 2015 May; 54(18):2874-84. PubMed ID: 25897562
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The 3-His Metal Coordination Site Promotes the Coupling of Oxygen Activation to Cysteine Oxidation in Cysteine Dioxygenase.
    Forbes DL; Meneely KM; Chilton AS; Lamb AL; Ellis HR
    Biochemistry; 2020 Jun; 59(21):2022-2031. PubMed ID: 32368901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of the nitrosyl adduct of substrate-bound mouse cysteine dioxygenase by electron paramagnetic resonance: electronic structure of the active site and mechanistic implications.
    Pierce BS; Gardner JD; Bailey LJ; Brunold TC; Fox BG
    Biochemistry; 2007 Jul; 46(29):8569-78. PubMed ID: 17602574
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The mechanism of cysteine oxygenation by cysteine dioxygenase enzymes.
    Aluri S; de Visser SP
    J Am Chem Soc; 2007 Dec; 129(48):14846-7. PubMed ID: 17994747
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A strongly bound high-spin iron(II) coordinates cysteine and homocysteine in cysteine dioxygenase.
    Tchesnokov EP; Wilbanks SM; Jameson GN
    Biochemistry; 2012 Jan; 51(1):257-64. PubMed ID: 22122511
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structures of Arg- and Gln-type bacterial cysteine dioxygenase homologs.
    Driggers CM; Hartman SJ; Karplus PA
    Protein Sci; 2015 Jan; 24(1):154-61. PubMed ID: 25307852
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation, crystallization and X-ray diffraction analysis to 1.5 A resolution of rat cysteine dioxygenase, a mononuclear iron enzyme responsible for cysteine thiol oxidation.
    Simmons CR; Hao Q; Stipanuk MH
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2005 Nov; 61(Pt 11):1013-6. PubMed ID: 16511222
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.