BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

490 related articles for article (PubMed ID: 18847221)

  • 1. Monitoring the conformational changes of photoactivated rhodopsin from microseconds to seconds by transient fluorescence spectroscopy.
    Hoersch D; Otto H; Wallat I; Heyn MP
    Biochemistry; 2008 Nov; 47(44):11518-27. PubMed ID: 18847221
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics of the light-induced proton translocation associated with the pH-dependent formation of the metarhodopsin I/II equilibrium of bovine rhodopsin.
    Dickopf S; Mielke T; Heyn MP
    Biochemistry; 1998 Dec; 37(48):16888-97. PubMed ID: 9836581
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time-resolved single tryptophan fluorescence in photoactive yellow protein monitors changes in the chromophore structure during the photocycle via energy transfer.
    Otto H; Hoersch D; Meyer TE; Cusanovich MA; Heyn MP
    Biochemistry; 2005 Dec; 44(51):16804-16. PubMed ID: 16363794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface charge changes upon formation of the signaling state in visual rhodopsin.
    Möller M; Alexiev U
    Photochem Photobiol; 2009; 85(2):501-8. PubMed ID: 19222792
    [TBL] [Abstract][Full Text] [Related]  

  • 5. pH Dependence of the photocycle kinetics of the E46Q mutant of photoactive yellow protein: protonation equilibrium between I1 and I2 intermediates, chromophore deprotonation by hydroxyl uptake, and protonation relaxation of the dark state.
    Borucki B; Otto H; Joshi CP; Gasperi C; Cusanovich MA; Devanathan S; Tollin G; Heyn MP
    Biochemistry; 2003 Jul; 42(29):8780-90. PubMed ID: 12873139
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two intermediates appear on the lumirhodopsin time scale after rhodopsin photoexcitation.
    Szundi I; Lewis JW; Kliger DS
    Biochemistry; 2003 May; 42(17):5091-8. PubMed ID: 12718552
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proton transfer reactions linked to rhodopsin activation.
    Szundi I; Mah TL; Lewis JW; Jäger S; Ernst OP; Hofmann KP; Kliger DS
    Biochemistry; 1998 Oct; 37(40):14237-44. PubMed ID: 9760262
    [TBL] [Abstract][Full Text] [Related]  

  • 8. X-ray crystallographic analysis of 9-cis-rhodopsin, a model analogue visual pigment.
    Nakamichi H; Okada T
    Photochem Photobiol; 2007; 83(2):232-5. PubMed ID: 17576343
    [TBL] [Abstract][Full Text] [Related]  

  • 9. X-ray diffraction of heavy-atom labelled two-dimensional crystals of rhodopsin identifies the position of cysteine 140 in helix 3 and cysteine 316 in helix 8.
    Mielke T; Villa C; Edwards PC; Schertler GF; Heyn MP
    J Mol Biol; 2002 Feb; 316(3):693-709. PubMed ID: 11866527
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Light-induced changes in the structure and accessibility of the cytoplasmic loops of rhodopsin in the activated MII state.
    Mielke T; Alexiev U; Gläsel M; Otto H; Heyn MP
    Biochemistry; 2002 Jun; 41(25):7875-84. PubMed ID: 12069576
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dissection of environmental changes at the cytoplasmic surface of light-activated bacteriorhodopsin and visual rhodopsin: sequence of spectrally silent steps.
    Kim TY; Moeller M; Winkler K; Kirchberg K; Alexiev U
    Photochem Photobiol; 2009; 85(2):570-7. PubMed ID: 19222795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time-resolved rapid-scan Fourier transform infrared difference spectroscopy on a noncyclic photosystem: rhodopsin photointermediates from Lumi to Meta II.
    Lüdeke S; Lórenz Fonfría VA; Siebert F; Vogel R
    Biopolymers; 2006 Oct; 83(2):159-69. PubMed ID: 16721790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Agonist-induced conformational changes in bovine rhodopsin: insight into activation of G-protein-coupled receptors.
    Bhattacharya S; Hall SE; Vaidehi N
    J Mol Biol; 2008 Oct; 382(2):539-55. PubMed ID: 18638482
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coupling of protonation switches during rhodopsin activation.
    Vogel R; Sakmar TP; Sheves M; Siebert F
    Photochem Photobiol; 2007; 83(2):286-92. PubMed ID: 17576345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. X-Ray diffraction analysis of three-dimensional crystals of bovine rhodopsin obtained from mixed micelles.
    Okada T; Le Trong I; Fox BA; Behnke CA; Stenkamp RE; Palczewski K
    J Struct Biol; 2000 May; 130(1):73-80. PubMed ID: 10806093
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rhodopsin regeneration is accelerated via noncovalent 11-cis retinal-opsin complex--a role of retinal binding pocket of opsin.
    Matsumoto H; Yoshizawa T
    Photochem Photobiol; 2008; 84(4):985-9. PubMed ID: 18399914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Specific tryptophan UV-absorbance changes are probes of the transition of rhodopsin to its active state.
    Lin SW; Sakmar TP
    Biochemistry; 1996 Aug; 35(34):11149-59. PubMed ID: 8780519
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time-resolved photointermediate changes in rhodopsin glutamic acid 181 mutants.
    Lewis JW; Szundi I; Kazmi MA; Sakmar TP; Kliger DS
    Biochemistry; 2004 Oct; 43(39):12614-21. PubMed ID: 15449951
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of protein hydration on receptor conformation: decreased levels of bound water promote metarhodopsin II formation.
    Mitchell DC; Litman BJ
    Biochemistry; 1999 Jun; 38(24):7617-23. PubMed ID: 10387000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and function in rhodopsin. Measurement of the rate of metarhodopsin II decay by fluorescence spectroscopy.
    Farrens DL; Khorana HG
    J Biol Chem; 1995 Mar; 270(10):5073-6. PubMed ID: 7890614
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.