BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 18847239)

  • 1. Cooperative function of ammonium polyacrylate with antifreeze protein type I.
    Funakoshi K; Inada T; Kawabata H; Tomita T
    Biomacromolecules; 2008 Nov; 9(11):3150-6. PubMed ID: 18847239
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A two-dimensional adsorption kinetic model for thermal hysteresis activity in antifreeze proteins.
    Li QZ; Yeh Y; Liu JJ; Feeney RE; Krishnan VV
    J Chem Phys; 2006 May; 124(20):204702. PubMed ID: 16774359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of Adsorption Orientation on the Statistical Mechanics Model of Type I Antifreeze Protein: The Thermal Hysteresis Temperature.
    Li LF; Liang XX
    J Phys Chem B; 2017 Oct; 121(41):9513-9517. PubMed ID: 28956610
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The mechanism by which fish antifreeze proteins cause thermal hysteresis.
    Kristiansen E; Zachariassen KE
    Cryobiology; 2005 Dec; 51(3):262-80. PubMed ID: 16140290
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conjugation of type I antifreeze protein to polyallylamine increases thermal hysteresis activity.
    Can O; Holland NB
    Bioconjug Chem; 2011 Oct; 22(10):2166-71. PubMed ID: 21905742
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superheating of ice crystals in antifreeze protein solutions.
    Celik Y; Graham LA; Mok YF; Bar M; Davies PL; Braslavsky I
    Proc Natl Acad Sci U S A; 2010 Mar; 107(12):5423-8. PubMed ID: 20215465
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Local ice melting by an antifreeze protein.
    Calvaresi M; Höfinger S; Zerbetto F
    Biomacromolecules; 2012 Jul; 13(7):2046-52. PubMed ID: 22657839
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activity of short segments of Type I antifreeze protein.
    Kun H; Mastai Y
    Biopolymers; 2007; 88(6):807-14. PubMed ID: 17868093
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Utilizing avidity to improve antifreeze protein activity: a type III antifreeze protein trimer exhibits increased thermal hysteresis activity.
    Can Ö; Holland NB
    Biochemistry; 2013 Dec; 52(48):8745-52. PubMed ID: 24191717
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of a type I antifreeze protein (AFP) on the melting of frozen AFP and AFP+solute aqueous solutions studied by NMR microimaging experiment.
    Ba Y; Mao Y; Galdino L; Günsen Z
    J Biol Phys; 2013 Jan; 39(1):131-44. PubMed ID: 23860838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ice-surface adsorption enhanced colligative effect of antifreeze proteins in ice growth inhibition.
    Mao Y; Ba Y
    J Chem Phys; 2006 Sep; 125(9):091102. PubMed ID: 16965064
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Animal ice-binding (antifreeze) proteins and glycolipids: an overview with emphasis on physiological function.
    Duman JG
    J Exp Biol; 2015 Jun; 218(Pt 12):1846-55. PubMed ID: 26085662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ice restructuring inhibition activities in antifreeze proteins with distinct differences in thermal hysteresis.
    Yu SO; Brown A; Middleton AJ; Tomczak MM; Walker VK; Davies PL
    Cryobiology; 2010 Dec; 61(3):327-34. PubMed ID: 20977900
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fish-Derived Antifreeze Proteins and Antifreeze Glycoprotein Exhibit a Different Ice-Binding Property with Increasing Concentration.
    Tsuda S; Yamauchi A; Khan NMU; Arai T; Mahatabuddin S; Miura A; Kondo H
    Biomolecules; 2020 Mar; 10(3):. PubMed ID: 32182859
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solution structure of a recombinant type I sculpin antifreeze protein.
    Kwan AH; Fairley K; Anderberg PI; Liew CW; Harding MM; Mackay JP
    Biochemistry; 2005 Feb; 44(6):1980-8. PubMed ID: 15697223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hyperactive antifreeze protein from an Antarctic sea ice bacterium Colwellia sp. has a compound ice-binding site without repetitive sequences.
    Hanada Y; Nishimiya Y; Miura A; Tsuda S; Kondo H
    FEBS J; 2014 Aug; 281(16):3576-90. PubMed ID: 24938370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antifreeze glycoproteins from the antarctic fish Dissostichus mawsoni studied by differential scanning calorimetry (DSC) in combination with nanolitre osmometry.
    Ramløv H; DeVries AL; Wilson PW
    Cryo Letters; 2005; 26(2):73-84. PubMed ID: 15897959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structures and ice-binding faces of the alanine-rich type I antifreeze proteins.
    Patel SN; Graether SP
    Biochem Cell Biol; 2010 Apr; 88(2):223-9. PubMed ID: 20453925
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ice-binding proteins that accumulate on different ice crystal planes produce distinct thermal hysteresis dynamics.
    Drori R; Celik Y; Davies PL; Braslavsky I
    J R Soc Interface; 2014 Sep; 11(98):20140526. PubMed ID: 25008081
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The antifreeze potential of the spruce budworm thermal hysteresis protein.
    Tyshenko MG; Doucet D; Davies PL; Walker VK
    Nat Biotechnol; 1997 Sep; 15(9):887-90. PubMed ID: 9306405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.