BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 18847243)

  • 1. Allene as the parent substrate in zinc-mediated biomimetic hydration reactions of cumulenes.
    Jahn BO; Eger WA; Anders E
    J Org Chem; 2008 Nov; 73(21):8265-78. PubMed ID: 18847243
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How does the exchange of one oxygen atom with sulfur affect the catalytic cycle of carbonic anhydrase?
    Schenk S; Kesselmeier J; Anders E
    Chemistry; 2004 Jun; 10(12):3091-105. PubMed ID: 15214093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catalytic activity of a ζ-class zinc and cadmium containing carbonic anhydrase. Compared work mechanisms.
    Amata O; Marino T; Russo N; Toscano M
    Phys Chem Chem Phys; 2011 Feb; 13(8):3468-77. PubMed ID: 21212893
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reaction paths of the [2+2] cycloaddition of X=C=Y molecules (X, Y=S or O or CH2). Ab initio study.
    Rode JE; Dobrowolski JC
    J Phys Chem A; 2006 Jan; 110(1):207-18. PubMed ID: 16392857
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparative study of the catalytic mechanisms of the zinc and cadmium containing carbonic anhydrase.
    Marino T; Russo N; Toscano M
    J Am Chem Soc; 2005 Mar; 127(12):4242-53. PubMed ID: 15783206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nucleophilic reaction by carbonic anhydrase model zinc compound: characterization of intermediates for CO2 hydration and phosphoester hydrolysis.
    Echizen T; Ibrahim MM; Nakata K; Izumi M; Ichikawa K; Shiro M
    J Inorg Biochem; 2004 Aug; 98(8):1347-60. PubMed ID: 15271511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intramolecular proton transfer from multiple sites in catalysis by murine carbonic anhydrase V.
    Earnhardt JN; Qian M; Tu C; Laipis PJ; Silverman DN
    Biochemistry; 1998 May; 37(20):7649-55. PubMed ID: 9585580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toward a small molecule, biomimetic carbonic anhydrase model: theoretical and experimental investigations of a panel of zinc(II) aza-macrocyclic catalysts.
    Koziol L; Valdez CA; Baker SE; Lau EY; Floyd WC; Wong SE; Satcher JH; Lightstone FC; Aines RD
    Inorg Chem; 2012 Jun; 51(12):6803-12. PubMed ID: 22671132
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanistic aspects of propene epoxidation by hydrogen peroxide. Catalytic role of water molecules, external electric field, and zeolite framework of TS-1.
    Stare J; Henson NJ; Eckert J
    J Chem Inf Model; 2009 Apr; 49(4):833-46. PubMed ID: 19267473
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New model for a theoretical density functional theory investigation of the mechanism of the carbonic anhydrase: how does the internal bicarbonate rearrangement occur?
    Bottoni A; Lanza CZ; Miscione GP; Spinelli D
    J Am Chem Soc; 2004 Feb; 126(5):1542-50. PubMed ID: 14759213
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon dioxide and related heterocumulenes at zinc and lithium cations: bioinspired reactions and principles.
    Schenk S; Notni J; Köhn U; Wermann K; Anders E
    Dalton Trans; 2006 Sep; (35):4191-206. PubMed ID: 16932811
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemistry of energetically activated cumulenes - from allene (H2CCCH2) to hexapentaene (H2CCCCCCH2).
    Gu X; Kaiser RI; Mebel AM
    Chemphyschem; 2008 Feb; 9(3):350-69. PubMed ID: 18275046
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The missing link in COS metabolism: a model study on the reactivation of carbonic anhydrase from its hydrosulfide analogue.
    Notni J; Schenk S; Protoschill-Krebs G; Kesselmeier J; Anders E
    Chembiochem; 2007 Mar; 8(5):530-6. PubMed ID: 17304603
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Promiscuous ability of human carbonic anhydrase: QM and QM/MM investigation of carbon dioxide and carbodiimide hydration.
    Piazzetta P; Marino T; Russo N
    Inorg Chem; 2014 Apr; 53(7):3488-93. PubMed ID: 24635411
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The sequestration of hydroxyl ions by C2 in liquid water: useful physiological roles for a reversible complex formation in the presence of protein catalysts.
    Widdas WF; Baker GF
    Cytobios; 2000; 103(404):177-92. PubMed ID: 11086713
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and metal exchange in the cadmium carbonic anhydrase of marine diatoms.
    Xu Y; Feng L; Jeffrey PD; Shi Y; Morel FM
    Nature; 2008 Mar; 452(7183):56-61. PubMed ID: 18322527
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical investigation of the reaction mechanism of the dinuclear zinc enzyme dihydroorotase.
    Liao RZ; Yu JG; Raushel FM; Himo F
    Chemistry; 2008; 14(14):4287-92. PubMed ID: 18366031
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gold(I)-catalyzed enantioselective intermolecular hydroarylation of allenes with indoles and reaction mechanism by density functional theory calculations.
    Wang MZ; Zhou CY; Guo Z; Wong EL; Wong MK; Che CM
    Chem Asian J; 2011 Mar; 6(3):812-24. PubMed ID: 21344657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redefinition of rubisco carboxylase reaction reveals origin of water for hydration and new roles for active-site residues.
    Kannappan B; Gready JE
    J Am Chem Soc; 2008 Nov; 130(45):15063-80. PubMed ID: 18855361
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development, mechanism, and scope of the palladium-catalyzed enantioselective allene diboration.
    Burks HE; Liu S; Morken JP
    J Am Chem Soc; 2007 Jul; 129(28):8766-73. PubMed ID: 17589992
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.