These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 18847258)

  • 1. Synthesis and electrochemical reaction with lithium of mesoporous iron oxalate nanoribbons.
    Aragón MJ; León B; Pérez Vicente C; Tirado JL
    Inorg Chem; 2008 Nov; 47(22):10366-71. PubMed ID: 18847258
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-performing mesoporous iron oxalate anodes for lithium-ion batteries.
    Ang WA; Gupta N; Prasanth R; Madhavi S
    ACS Appl Mater Interfaces; 2012 Dec; 4(12):7011-9. PubMed ID: 23163539
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TiO2(B) nanoribbons as negative electrode material for lithium ion batteries with high rate performance.
    Beuvier T; Richard-Plouet M; Mancini-Le Granvalet M; Brousse T; Crosnier O; Brohan L
    Inorg Chem; 2010 Sep; 49(18):8457-64. PubMed ID: 20722375
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrothermal synthesis of Zn2SnO4 as anode materials for Li-ion battery.
    Rong A; Gao XP; Li GR; Yan TY; Zhu HY; Qu JQ; Song DY
    J Phys Chem B; 2006 Aug; 110(30):14754-60. PubMed ID: 16869583
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alpha-CuV2O6 nanowires: hydrothermal synthesis and primary lithium battery application.
    Ma H; Zhang S; Ji W; Tao Z; Chen J
    J Am Chem Soc; 2008 Apr; 130(15):5361-7. PubMed ID: 18366175
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of CuO nanowalnuts and nanoribbons from aqueous solution and their catalytic and electrochemical properties.
    Yu Q; Huang H; Chen R; Wang P; Yang H; Gao M; Peng X; Ye Z
    Nanoscale; 2012 Apr; 4(8):2613-20. PubMed ID: 22426955
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced electrochemical lithium storage by graphene nanoribbons.
    Bhardwaj T; Antic A; Pavan B; Barone V; Fahlman BD
    J Am Chem Soc; 2010 Sep; 132(36):12556-8. PubMed ID: 20731378
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A feasibility study on the use of Li(4)V(3)O(8) as a high capacity cathode material for lithium-ion batteries.
    Ng SH; Tran N; Bramnik KG; Hibst H; Novák P
    Chemistry; 2008; 14(35):11141-8. PubMed ID: 18979463
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of high-density nanocavities inside TiO2-B nanoribbons and their enhanced electrochemical lithium storage properties.
    Li Q; Zhang J; Liu B; Li M; Liu R; Li X; Ma H; Yu S; Wang L; Zou Y; Li Z; Zou B; Cui T; Zou G
    Inorg Chem; 2008 Nov; 47(21):9870-3. PubMed ID: 18837547
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hexagonal-shaped tin glycolate particles: a preliminary study of their suitability as li-ion insertion electrodes.
    Ng SH; Chew SY; Dos Santos DI; Chen J; Wang JZ; Dou SX; Liu HK
    Chem Asian J; 2008 May; 3(5):854-61. PubMed ID: 18383054
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Superlong beta-AgVO3 nanoribbons: high-yield synthesis by a pyridine-assisted solution approach, their stability, electrical and electrochemical properties.
    Song JM; Lin YZ; Yao HB; Fan FJ; Li XG; Yu SH
    ACS Nano; 2009 Mar; 3(3):653-60. PubMed ID: 19231822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemical hydrogen storage in Li-doped pentacene.
    Fang B; Zhou H; Honma I
    J Chem Phys; 2006 May; 124(20):204718. PubMed ID: 16774375
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and synthesis of high performance multifunctional ultrathin hematite nanoribbons.
    Sarkar D; Mandal M; Mandal K
    ACS Appl Mater Interfaces; 2013 Nov; 5(22):11995-2004. PubMed ID: 24180325
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nano-LiNi(0.5)Mn(1.5)O(4) spinel: a high power electrode for Li-ion batteries.
    Shaju KM; Bruce PG
    Dalton Trans; 2008 Oct; (40):5471-5. PubMed ID: 19082030
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Double-shelled nanocapsules of V2O5-based composites as high-performance anode and cathode materials for Li ion batteries.
    Liu J; Xia H; Xue D; Lu L
    J Am Chem Soc; 2009 Sep; 131(34):12086-7. PubMed ID: 19705911
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile synthesis of tin oxide nanoflowers: a potential high-capacity lithium-ion-storage material.
    Ning J; Dai Q; Jiang T; Men K; Liu D; Xiao N; Li C; Li D; Liu B; Zou B; Zou G; Yu WW
    Langmuir; 2009 Feb; 25(3):1818-21. PubMed ID: 19105789
    [TBL] [Abstract][Full Text] [Related]  

  • 18. General synthesis and phase control of metal molybdate hydrates MMoO4.nH2O (M = Co, Ni, Mn, n = 0, 3/4, 1) nano/microcrystals by a hydrothermal approach: magnetic, photocatalytic, and electrochemical properties.
    Ding Y; Wan Y; Min YL; Zhang W; Yu SH
    Inorg Chem; 2008 Sep; 47(17):7813-23. PubMed ID: 18681424
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of the rate capability of nanostructured amorphous and anatase TiO2 for lithium insertion using anodic TiO2 nanotube arrays.
    Fang HT; Liu M; Wang DW; Sun T; Guan DS; Li F; Zhou J; Sham TK; Cheng HM
    Nanotechnology; 2009 Jun; 20(22):225701. PubMed ID: 19436089
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Necklace-like hollow carbon nanospheres from the pentagon-including reactants: synthesis and electrochemical properties.
    Wu C; Zhu X; Ye L; Ouyang C; Hu S; Lei L; Xie Y
    Inorg Chem; 2006 Oct; 45(21):8543-50. PubMed ID: 17029365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.