BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 18847512)

  • 1. Identification of CDK2 substrates in human cell lysates.
    Chi Y; Welcker M; Hizli AA; Posakony JJ; Aebersold R; Clurman BE
    Genome Biol; 2008 Oct; 9(10):R149. PubMed ID: 18847512
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biochemical characterization of Cdk2-Speedy/Ringo A2.
    Cheng A; Gerry S; Kaldis P; Solomon MJ
    BMC Biochem; 2005 Sep; 6():19. PubMed ID: 16191191
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential phosphorylation of T-47D human breast cancer cell substrates by D1-, D3-, E-, and A-type cyclin-CDK complexes.
    Sarcevic B; Lilischkis R; Sutherland RL
    J Biol Chem; 1997 Dec; 272(52):33327-37. PubMed ID: 9407125
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cyclin B and cyclin A confer different substrate recognition properties on CDK2.
    Brown NR; Lowe ED; Petri E; Skamnaki V; Antrobus R; Johnson LN
    Cell Cycle; 2007 Jun; 6(11):1350-9. PubMed ID: 17495531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reciprocal activation by cyclin-dependent kinases 2 and 7 is directed by substrate specificity determinants outside the T loop.
    Garrett S; Barton WA; Knights R; Jin P; Morgan DO; Fisher RP
    Mol Cell Biol; 2001 Jan; 21(1):88-99. PubMed ID: 11113184
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New structural insights into phosphorylation-free mechanism for full cyclin-dependent kinase (CDK)-cyclin activity and substrate recognition.
    Zheng F; Quiocho FA
    J Biol Chem; 2013 Oct; 288(42):30682-30692. PubMed ID: 24022486
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphorylation of the myristoylated protein kinase C substrate MARCKS by the cyclin E-cyclin-dependent kinase 2 complex in vitro.
    Manenti S; Yamauchi E; Sorokine O; Knibiehler M; Van Dorsselaer A; Taniguchi H; Ducommun B; Darbon JM
    Biochem J; 1999 Jun; 340 ( Pt 3)(Pt 3):775-82. PubMed ID: 10359664
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular basis for the specificity of p27 toward cyclin-dependent kinases that regulate cell division.
    Lacy ER; Wang Y; Post J; Nourse A; Webb W; Mapelli M; Musacchio A; Siuzdak G; Kriwacki RW
    J Mol Biol; 2005 Jun; 349(4):764-73. PubMed ID: 15890360
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cyclin-dependent kinase-2 (Cdk2) forms an inactive complex with cyclin D1 since Cdk2 associated with cyclin D1 is not phosphorylated by Cdk7-cyclin-H.
    Higashi H; Suzuki-Takahashi I; Saitoh S; Segawa K; Taya Y; Okuyama A; Nishimura S; Kitagawa M
    Eur J Biochem; 1996 Apr; 237(2):460-7. PubMed ID: 8647086
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural basis of divergent cyclin-dependent kinase activation by Spy1/RINGO proteins.
    McGrath DA; Fifield BA; Marceau AH; Tripathi S; Porter LA; Rubin SM
    EMBO J; 2017 Aug; 36(15):2251-2262. PubMed ID: 28666995
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural prediction of the interaction of the tumor suppressor p27
    Li J; Vervoorts J; Carloni P; Rossetti G; Lüscher B
    BMC Bioinformatics; 2017 Jan; 18(1):15. PubMed ID: 28056778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Identification of new substrates of cyclin-activated kinases in breast cancers].
    Lilischkis R; Barczak E; Marwedel M; Mehraein Y; Lauterlein M; Lüscher B; Kreipe H
    Verh Dtsch Ges Pathol; 2001; 85():269-74. PubMed ID: 11894409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct Substrate Identification with an Analog Sensitive (AS) Viral Cyclin-Dependent Kinase (v-Cdk).
    Umaña AC; Iwahori S; Kalejta RF
    ACS Chem Biol; 2018 Jan; 13(1):189-199. PubMed ID: 29215867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. HIRA, the human homologue of yeast Hir1p and Hir2p, is a novel cyclin-cdk2 substrate whose expression blocks S-phase progression.
    Hall C; Nelson DM; Ye X; Baker K; DeCaprio JA; Seeholzer S; Lipinski M; Adams PD
    Mol Cell Biol; 2001 Mar; 21(5):1854-65. PubMed ID: 11238922
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of changing the site of activating phosphorylation in CDK2 from threonine to serine.
    Kaldis P; Cheng A; Solomon MJ
    J Biol Chem; 2000 Oct; 275(42):32578-84. PubMed ID: 10931829
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cyclin-dependent kinase 2 dependent phosphorylation of ATRIP regulates the G2-M checkpoint response to DNA damage.
    Myers JS; Zhao R; Xu X; Ham AJ; Cortez D
    Cancer Res; 2007 Jul; 67(14):6685-90. PubMed ID: 17638878
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of an oriented peptide library to determine the optimal substrates of protein kinases.
    Songyang Z; Blechner S; Hoagland N; Hoekstra MF; Piwnica-Worms H; Cantley LC
    Curr Biol; 1994 Nov; 4(11):973-82. PubMed ID: 7874496
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studies on the in vitro phosphorylation of HSSB-p34 and -p107 by cyclin-dependent kinases. Cyclin-substrate interactions dictate the efficiency of phosphorylation.
    Gibbs E; Pan ZQ; Niu H; Hurwitz J
    J Biol Chem; 1996 Sep; 271(37):22847-54. PubMed ID: 8798463
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cyclin E-CDK2 protein phosphorylates plant homeodomain finger protein 8 (PHF8) and regulates its function in the cell cycle.
    Sun L; Huang Y; Wei Q; Tong X; Cai R; Nalepa G; Ye X
    J Biol Chem; 2015 Feb; 290(7):4075-85. PubMed ID: 25548279
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of Mcm2 phosphorylation sites by S-phase-regulating kinases.
    Montagnoli A; Valsasina B; Brotherton D; Troiani S; Rainoldi S; Tenca P; Molinari A; Santocanale C
    J Biol Chem; 2006 Apr; 281(15):10281-90. PubMed ID: 16446360
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.