These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 1884765)

  • 1. Spontaneous and NMDA evoked motor rhythms in the neonatal mouse spinal cord: an in vitro study with comparisons to in situ activity.
    Hernandez P; Elbert K; Droge MH
    Exp Brain Res; 1991; 85(1):66-74. PubMed ID: 1884765
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of spontaneous motor pattern generation in non-hemisected and hemisected mouse spinal cord.
    Tao Y; Droge MH
    Neurosci Lett; 1992 Sep; 144(1-2):116-20. PubMed ID: 1436689
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Localization of the spinal network associated with generation of hindlimb locomotion in the neonatal rat and organization of its transverse coupling system.
    Kremer E; Lev-Tov A
    J Neurophysiol; 1997 Mar; 77(3):1155-70. PubMed ID: 9084588
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fictive hindlimb motor patterns evoked by AMPA and NMDA in turtle spinal cord-hindlimb nerve preparations.
    Currie SN
    J Physiol Paris; 1999; 93(3):199-211. PubMed ID: 10399675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regional distribution of the locomotor pattern-generating network in the neonatal rat spinal cord.
    Cowley KC; Schmidt BJ
    J Neurophysiol; 1997 Jan; 77(1):247-59. PubMed ID: 9120567
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glycine effects on in vitro motor pattern generation in mouse spinal cord.
    Droge MH; Tao Y
    Neurosci Lett; 1993 Aug; 158(2):139-42. PubMed ID: 8233086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Properties of rhythmic activity generated by the isolated spinal cord of the neonatal mouse.
    Whelan P; Bonnot A; O'Donovan MJ
    J Neurophysiol; 2000 Dec; 84(6):2821-33. PubMed ID: 11110812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genesis of spontaneous rhythmic motor patterns in the lumbosacral spinal cord of neonate mouse.
    Bonnot A; Morin D; Viala D
    Brain Res Dev Brain Res; 1998 Jun; 108(1-2):89-99. PubMed ID: 9693787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flexibility of motor pattern generation across stimulation conditions by the neonatal rat spinal cord.
    Klein DA; Patino A; Tresch MC
    J Neurophysiol; 2010 Mar; 103(3):1580-90. PubMed ID: 20089814
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reversible disorganization of the locomotor pattern after neonatal spinal cord transection in the rat.
    Norreel JC; Pflieger JF; Pearlstein E; Simeoni-Alias J; Clarac F; Vinay L
    J Neurosci; 2003 Mar; 23(5):1924-32. PubMed ID: 12629197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Locomotor rhythmogenesis in the isolated rat spinal cord: a phase-coupled set of symmetrical flexion extension oscillators.
    Juvin L; Simmers J; Morin D
    J Physiol; 2007 Aug; 583(Pt 1):115-28. PubMed ID: 17569737
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electromyographic activity patterns of ankle flexor and extensor muscles during spontaneous and L-DOPA-induced locomotion in freely moving neonatal rats.
    Navarrete R; Slawińska U; Vrbová G
    Exp Neurol; 2002 Feb; 173(2):256-65. PubMed ID: 11822889
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An in vitro spinal cord-hindlimb preparation for studying behaviorally relevant rat locomotor function.
    Hayes HB; Chang YH; Hochman S
    J Neurophysiol; 2009 Feb; 101(2):1114-22. PubMed ID: 19073815
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of inhibitory neurotransmitters on the mudpuppy (Necturus maculatus) locomotor pattern in vitro.
    Jovanović K; Petrov T; Stein RB
    Exp Brain Res; 1999 Nov; 129(2):172-84. PubMed ID: 10591891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Locomotor rhythm evoked by ventrolateral funiculus stimulation in the neonatal rat spinal cord in vitro.
    Magnuson DS; Trinder TC
    J Neurophysiol; 1997 Jan; 77(1):200-6. PubMed ID: 9120561
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pattern generation in caudal-lumbar and sacrococcygeal segments of the neonatal rat spinal cord.
    Gabbay H; Delvolvé I; Lev-Tov A
    J Neurophysiol; 2002 Aug; 88(2):732-9. PubMed ID: 12163525
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metachronal coupling between spinal neuronal networks during locomotor activity in newborn rat.
    Falgairolle M; Cazalets JR
    J Physiol; 2007 Apr; 580(Pt 1):87-102. PubMed ID: 17185345
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison of motor patterns induced by N-methyl-D-aspartate, acetylcholine and serotonin in the in vitro neonatal rat spinal cord.
    Cowley KC; Schmidt BJ
    Neurosci Lett; 1994 Apr; 171(1-2):147-50. PubMed ID: 8084477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction between disinhibited bursting and fictive locomotor patterns in the rat isolated spinal cord.
    Beato M; Nistri A
    J Neurophysiol; 1999 Nov; 82(5):2029-38. PubMed ID: 10561384
    [TBL] [Abstract][Full Text] [Related]  

  • 20. N-methyl-D,L-aspartate-induced locomotor activity in a spinal cord-hindlimb muscles preparation of the newborn rat studied in vitro.
    Kudo N; Yamada T
    Neurosci Lett; 1987 Mar; 75(1):43-8. PubMed ID: 3554010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.