These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 18848369)

  • 1. Wettability hysteresis and its implications for DNAPL source zone distribution.
    Ryder JL; Demond AH
    J Contam Hydrol; 2008 Nov; 102(1-2):39-48. PubMed ID: 18848369
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of surfactant-induced wettability alterations on DNAPL invasion in quartz and iron oxide-coated sand systems.
    Molnar IL; O'Carroll DM; Gerhard JI
    J Contam Hydrol; 2011 Jan; 119(1-4):1-12. PubMed ID: 20880604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A review of NAPL source zone remediation efficiency and the mass flux approach.
    Soga K; Page JW; Illangasekare TH
    J Hazard Mater; 2004 Jul; 110(1-3):13-27. PubMed ID: 15177723
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of soil moisture dynamics on dense nonaqueous phase liquid (DNAPL) spill zone architecture in heterogeneous porous media.
    Yoon H; Valocchi AJ; Werth CJ
    J Contam Hydrol; 2007 Mar; 90(3-4):159-83. PubMed ID: 17184872
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Secondary imbibition in NAPL-invaded mixed-wet sediments.
    Al-Futaisi A; Patzek TW
    J Contam Hydrol; 2004 Oct; 74(1-4):61-81. PubMed ID: 15358487
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wettability contrasts between fresh and weathered diesel fuels.
    Drake SS; O'Carroll DM; Gerhard JI
    J Contam Hydrol; 2013 Jan; 144(1):46-57. PubMed ID: 23159759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of simplified mass transfer models to simulate the impacts of source zone architecture on nonaqueous phase liquid dissolution in heterogeneous porous media.
    Zhang C; Yoon H; Werth CJ; Valocchi AJ; Basu NB; Jawitz JW
    J Contam Hydrol; 2008 Nov; 102(1-2):49-60. PubMed ID: 18579257
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intermediate-scale 2D experimental investigation of in situ chemical oxidation using potassium permanganate for remediation of complex DNAPL source zones.
    Heiderscheidt JL; Siegrist RL; Illangasekare TH
    J Contam Hydrol; 2008 Nov; 102(1-2):3-16. PubMed ID: 18774622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hot water flushing for immiscible displacement of a viscous NAPL.
    O'Carroll DM; Sleep BE
    J Contam Hydrol; 2007 May; 91(3-4):247-66. PubMed ID: 17207892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of mass transfer characteristics for DNAPL source depletion and contaminant flux in a highly characterized glaciofluvial aquifer.
    Maji R; Sudicky EA
    J Contam Hydrol; 2008 Nov; 102(1-2):105-19. PubMed ID: 18929427
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The significance of heterogeneity on mass flux from DNAPL source zones: an experimental investigation.
    Page JW; Soga K; Illangasekare T
    J Contam Hydrol; 2007 Dec; 94(3-4):215-34. PubMed ID: 17706832
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of wettability on the recovery of NAPLs from alluvium.
    Dwarakanath V; Jackson RE; Pope GA
    Environ Sci Technol; 2002 Jan; 36(2):227-31. PubMed ID: 11827056
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Remediation of NAPL source zones: lessons learned from field studies at Hill and Dover AFB.
    McCray JE; Tick GR; Jawitz JW; Gierke JS; Brusseau ML; Falta RW; Knox RC; Sabatini DA; Annable MD; Harwell JH; Wood AL
    Ground Water; 2011; 49(5):727-44. PubMed ID: 21299555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of wettability on pore-scale characteristics of residual nonaqueous phase liquids.
    Al-Raoush RI
    Environ Sci Technol; 2009 Jul; 43(13):4796-801. PubMed ID: 19673267
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of nonaqueous phase liquid (NAPL) source zone architecture on mass removal mechanisms in strongly layered heterogeneous porous media during soil vapor extraction.
    Yoon H; Werth CJ; Valocchi AJ; Oostrom M
    J Contam Hydrol; 2008 Aug; 100(1-2):58-71. PubMed ID: 18619707
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of radon partition coefficients between water and organic liquids and their utilization for the assessment of subsurface NAPL contamination.
    Schubert M; Lehmann K; Paschke A
    Sci Total Environ; 2007 Apr; 376(1-3):306-16. PubMed ID: 17307243
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reaction efficiencies and rate constants for the goethite-catalyzed Fenton-like reaction of NAPL-form aromatic hydrocarbons and chloroethylenes.
    Yeh CK; Hsu CY; Chiu CH; Huang KL
    J Hazard Mater; 2008 Mar; 151(2-3):562-9. PubMed ID: 17673366
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of NAPL entrapment conditions on air sparging remediation efficiency.
    Waduge WA; Soga K; Kawabata J
    J Hazard Mater; 2004 Jul; 110(1-3):173-83. PubMed ID: 15177738
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modelling of iron cycling and its impact on the electron balance at a petroleum hydrocarbon contaminated site in Hnevice, Czech Republic.
    Vencelides Z; Sracek O; Prommer H
    J Contam Hydrol; 2007 Jan; 89(3-4):270-94. PubMed ID: 17070964
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of source zone heterogeneity on surfactant-enhanced NAPL dissolution and resulting remediation end-points.
    Saenton S; Illangasekare TH; Soga K; Saba TA
    J Contam Hydrol; 2002 Nov; 59(1-2):27-44. PubMed ID: 12683638
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.